522 research outputs found

    Explainable AI (XAI): Improving At-Risk Student Prediction with Theory-Guided Data Science, K-means Classification, and Genetic Programming

    Get PDF
    This research explores the use of eXplainable Artificial Intelligence (XAI) in Educational Data Mining (EDM) to improve the performance and explainability of artificial intelligence (AI) and machine learning (ML) models predicting at-risk students. Explainable predictions provide students and educators with more insight into at-risk indicators and causes, which facilitates instructional intervention guidance. Historically, low student retention has been prevalent across the globe as nations have implemented a wide range of interventions (e.g., policies, funding, and academic strategies) with only minimal improvements in recent years. In the US, recent attrition rates indicate two out of five first-time freshman students will not graduate from the same four-year institution within six years. In response, emerging AI research leveraging recent advancements in Deep Learning has demonstrated high predictive accuracy for identifying at-risk students, which is useful for planning instructional interventions. However, research suggested a general trade-off between performance and explainability of predictive models. Those that outperform, such as deep neural networks (DNN), are highly complex and considered black boxes (i.e., systems that are difficult to explain, interpret, and understand). The lack of model transparency/explainability results in shallow predictions with limited feedback prohibiting useful intervention guidance. Furthermore, concerns for trust and ethical use are raised for decision-making applications that involve humans, such as health, safety, and education. To address low student retention and the lack of interpretable models, this research explored the use of eXplainable Artificial Intelligence (XAI) in Educational Data Mining (EDM) to improve instruction and learning. More specifically, XAI has the potential to enhance the performance and explainability of AI/ML models predicting at-risk students. The scope of this study includes a hybrid research design comprising: (1) a systematic literature review of XAI and EDM applications in education; (2) the development of a theory-guided feature selection (TGFS) conceptual learning model; and (3) an EDM study exploring the efficacy of a TGFS XAI model. The EDM study implemented K-Means Classification for explorative (unsupervised) and predictive (supervised) analysis in addition to assessing Genetic Programming (GP), a type of XAI model, predictive performance, and explainability against common AI/ML models. Online student activity and performance data were collected from a learning management system (LMS) from a four-year higher education institution. Student data was anonymized and protected to ensure data privacy and security. Data was aggregated at weekly intervals to compute and assess the predictive performance (sensitivity, recall, and f-1 score) over time. Mean differences and effect sizes are reported at the .05 significance level. Reliability and validity are improved by implementing research best practices

    Mass transfer properties of Acacia mangium plantation wood

    Get PDF
    This study investigated the mass transfer properties (permeability and mass diffusivity) in the longitudinal, radial and tangential directions of plantation-grown Acacia mangium in VinhPhuc province,northeast, Vietnam. These properties will be used to complement a conventional drying model in the future. Measurements of gas and liquid permeability were performed using a Porometer (POROLUXTM1000). Mass diffusivity was determined in a constant humidity and temperature chamber using PVC-CHA vaporimeters. Results showed the gas permeability was significant higher than liquid with the descending order of longitudinal, radial, and tangential directions. The permeability anisotropy ratios from the longitudinal to transverse directions of Acacia mangium were much lower than other published species. However, the obvious anisotropy ratios from radial to tangential for both permeability and diffusivity, is one of concerns as they can exacerbate defects during drying. Besides, the high permeability and diffusivity of Acaciamangium compared to some other species reported compounds its relatively fast drying rate

    Practical use of reactor anti-neutrinos for nuclear safeguard in Vietnam

    Full text link
    One of the most abundant man-made sources of low energy (few~MeVs) neutrinos, reactor neutrino, is not only useful for studying neutrino properties, but it is also used in practical applications. In this study, we investigate the practical use of reactor neutrino detectors for nuclear safeguard in Vietnam, specifically at the Dalat Nuclear Reactor, a future research facility, and presumably commercial reactors with 500~kW, 10~MW, and 1000~MW thermal powers, respectively. We compute the rate of observed inverted beta decay events, as well as the statistical significance of extracting isotope composition under the practical assumptions of detector mass, detection efficiency, and background level. We find that a 1-ton detector mass can allow us to detect the reactor's on-off transition state from a few hours to a few days, depending on the standoff distance and reactor thermal power. We investigate how background and energy resolution affect the precision of the extracted weapon-usable 239Pu{}^{239}\text{Pu} isotope. We conclude that in order to distinguish the 10\% variation of the 239Pu{}^{239}\text{Pu} in the 10~MW thermal power reactor, a 1-ton detector placed 50~m away must achieve 1\% background level. Increasing the statistics by using a 10x larger detector or placing it 10\sqrt{10} times closer to the reactor alleviates the requirement of the background level to 10\%

    Mass transfer properties of Acacia mangium plantation wood

    Get PDF
    This study investigated the mass transfer properties (permeability and mass diffusivity) in the longitudinal, radial and tangential directions of plantation-grown Acacia mangium in VinhPhuc province,northeast, Vietnam. These properties will be used to complement a conventional drying model in the future. Measurements of gas and liquid permeability were performed using a Porometer (POROLUXTM1000). Mass diffusivity was determined in a constant humidity and temperature chamber using PVC-CHA vaporimeters. Results showed the gas permeability was significant higher than liquid with the descending order of longitudinal, radial, and tangential directions. The permeability anisotropy ratios from the longitudinal to transverse directions of Acacia mangium were much lower than other published species. However, the obvious anisotropy ratios from radial to tangential for both permeability and diffusivity, is one of concerns as they can exacerbate defects during drying. Besides, the high permeability and diffusivity of Acaciamangium compared to some other species reported compounds its relatively fast drying rate

    Stringent constraint on CPT violation with the synergy of T2K-II, NOΜ\nuA extension, and JUNO

    Full text link
    Neutrino oscillation experiments have measured precisely the mass-squared differences of three neutrino mass eigenstates, and three leptonic mixing angles by utilizing both neutrino and anti-neutrino oscillations. The possible CPT violation may manifest itself in the difference of neutrino and anti-neutrino oscillation parameters, making these experiments promising tools for testing CPT invariance. We investigate empirically the sensitivity of the CPT test via the difference in mass-squared splittings (Δm312−Δm‟312\Delta m^2_{31} - \Delta \overline{m}^2_{31}) and in leptonic mixing angles (sin⁥2Ξ23−sin⁥2Ξ‟23\sin^2\theta_{23} - \sin^2\overline{\theta}_{23}) with the synergy of T2K-II, NOÎœ\nuA extension, and JUNO experiments. If the CPT symmetry is found to be conserved, the joint analysis of the three experiments will be able to establish limits of ∣Δm312−Δm‟312∣|\Delta m^2_{31} - \Delta \overline{m}^2_{31}| < 5.3×10−3eV25.3\times 10^{-3} \text{eV}^2 and ∣sin⁥2Ξ23−sin⁥2Ξ‟23∣|\sin^2\theta_{23} - \sin^2\overline{\theta}_{23}| < 0.100.10 at 3σ\sigma C. L. on the possible CPT violation. We find that with (Δm312−Δm‟312\Delta m^2_{31} - \Delta \overline{m}^2_{31}), the dependence of the statistical significance on the relevant parameters to exclude the CPT conservation is marginal, and that, if the difference in the best-fit values of Δm312\Delta m^2_{31} and Δm‟312\Delta \overline{m}^2_{31} measured by MINOS(+) and NOÎœ\nuA persists as the true, the combined analysis will rule out the CPT conservation at 4σ\sigma C. L.. With the (sin⁥2Ξ23−sin⁥2Ξ‟23\sin^2\theta_{23} - \sin^2\overline{\theta}_{23}), the statistical significance to exclude CPT invariance depends strongly on the true value of Ξ23(Ξ‟23)\theta_{23}(\overline{\theta}_{23}). In case of maximal mixing of Ξ23\theta_{23}, the CPT conservation will be excluded at 3σ\sigma C. L. or more if the difference in the best-fit values of Ξ23\theta_{23} and Ξ‟23\overline{\theta}_{23} remains as the true.Comment: 10 pages, 10 figure

    Retrieval of material properties of monolayer transition-metal dichalcogenides from magnetoexciton energy spectra

    Full text link
    Reduced exciton mass, polarizability, and dielectric constant of the surrounding medium are essential properties for semiconduction materials, and they can be extracted recently from the magnetoexciton energies. However, the acceptable accuracy of the previously suggested method requires very high magnetic intensity. Therefore, in the present paper, we propose an alternative method of extracting these material properties from recently available experimental magnetoexciton s-state energies in monolayer transition-metal dichalcogenides (TMDCs). The method is based on the high sensitivity of exciton energies to the material parameters in the Rytova-Keldysh model. It allows us to vary the considered material parameters to get the best fit of the theoretical calculation to the experimental exciton energies for the 1s1s, 2s2s, and 3s3s states. This procedure gives values of the exciton reduced mass and 2D polarizability. Then, the experimental magnetoexciton spectra compared to the theoretical calculation gives also the average dielectric constant. Concrete applications are presented only for monolayers WSe2_2 and WS2_2 from the recently available experimental data. However, the presented approach is universal and can be applied to other monolayer TMDCs. The mentioned fitting procedure requires a fast and effective method of solving the Schr\"{o}dinger of an exciton in monolayer TMDCs with a magnetic field. Therefore, we also develop such a method in this study for highly accurate magnetoexciton energies.Comment: 8 pages, 4 figures, 4 table

    Seasonal variation of phytoplankton in My Thanh River, Mekong delta, Vietnam

    Get PDF
    A study on the seasonal variation of phytoplankton composition was conducted at the upper, middle, and lower parts of the My Thanh River, which supplies an important source of water for aquaculture. Qualitative and quantitative samples of phytoplankton were collected monthly at both high and low tide. The results showed that a total of 171 phytoplankton (algae) species were recorded, belonging to 59 genera and 5 phyla. Diatoms were the most abundant group with the highest species number, followed by green algae. The other phyla possessed a lower number of species. The species composition was more diverse in the rainy season and at high tide at most of the sampling sites. The mean density of algae varied from 30,900-43,521 ind.L^-1^. The density of diatoms was higher in the middle and lower parts. At the same time, euglenoids displayed the highest density in the upper part, showing a difference in the dominant algae group under the influence of salinity. Salinity was found to be significantly positively correlated (p<0.01) with diatoms, whereas it was negatively correlated (p<0.05) with blue-green algae and euglenoids. The algae composition was quite diverse, with the H' index ranging from 2.0-3.3, showing the water quality was slightly to moderately polluted

    The CIPAZ study protocol: an open label randomised controlled trial of azithromycin versus ciprofloxacin for the treatment of children hospitalised with dysentery in Ho Chi Minh City, Vietnam

    Get PDF
    Background: Diarrhoeal disease remains a common cause of illness and death in children <5 years of age. Faecal-oral infection by Shigella spp. causing bacillary dysentery is a leading cause of moderate-to-severe diarrhoea, particularly in low and middle-income countries. In Southeast Asia, S. sonnei predominates and infections are frequently resistant to first-line treatment with the fluoroquinolone, ciprofloxacin. While resistance to all antimicrobials is increasing, there may be theoretical and clinical benefits to prioritizing treatment of bacillary dysentery with the azalide, azithromycin. In this study we aim to measure the efficacy of treatment with azithromycin compared with ciprofloxacin, the current standard of care, for the treatment of children with bacillary dysentery. Methods and analysis: We will perform a multicentre, open-label, randomized controlled trial of two therapeutic options for the antimicrobial treatment of children hospitalised with dysentery. Children (6–60 months of age) presenting with symptoms and signs of dysentery at Children’s Hospital 2 in Ho Chi Minh City will be randomised (1:1) to treatment with either oral ciprofloxacin (15mg/kg/twice daily for 3 days, standard-of-care) or oral azithromycin (10mg/kg/daily for 3 days). The primary endpoint will be the proportion of treatment failure (defined by clinical and microbiological parameters) by day 28 (+3 days) and will be compared between study arms by logistic regression modelling using treatment allocation as the main variable. Ethics and dissemination: The study protocol (version 1.2 dated 27th December 2018) has been approved by the Oxford Tropical Research Ethics Committee (47–18) and the ethical review boards of Children's Hospital 2 (1341/NĐ2-CĐT). The study has also been approved by the Vietnamese Ministry of Health (5044/QĐ-BYT). Trial registration: Clinicaltrials.gov: NCT03854929 (February 26th 2019)

    On quantum teleportation with beam-splitter-generated entanglement

    Get PDF
    Following the lead of Cochrane, Milburn, and Munro [Phys. Rev. A {\bf 62}, 062307 (2000)], we investigate theoretically quantum teleportation by means of the number-sum and phase-difference variables. We study Fock-state entanglement generated by a beam splitter and show that two-mode Fock-state inputs can be entangled by a beam splitter into close approximations of maximally entangled eigenstates of the phase difference and the photon-number sum (Einstein-Podolsky-Rosen -- EPR -- states). Such states could be experimentally feasible with on-demand single-photon sources. We show that the teleportation fidelity can reach near unity when such ``quasi-EPR'' states are used as the quantum channel.Comment: 7 pages (two-column), 7 figures, submitted to Phys. Rev. A. Text unmodified, postscript error correcte
    • 

    corecore