6 research outputs found

    Determining the exposure of maternal medicines through breastfeeding:the UmbrelLACT study protocol - a contribution from the ConcePTION project

    Get PDF
    Introduction:Breastfeeding is beneficial for the health of the mother and child. However, at least 50% of postpartum women need pharmacotherapy, and this number is rising due to the increasing prevalence of chronic diseases and pregnancies at a later age. Making informed decisions on medicine use while breastfeeding is often challenging, considering the extensive information gap on medicine exposure and safety during lactation. This can result in the unnecessary cessation of breastfeeding, the avoidance of pharmacotherapy or the off-label use of medicines. The UmbrelLACT study aims to collect data on human milk transfer of maternal medicines, child exposure and general health outcomes. Additionally, the predictive performance of lactation and paediatric physiologically based pharmacokinetic (PBPK) models, a promising tool to predict medicine exposure in special populations, will be evaluated. Methods and analysis:Each year, we expect to recruit 5-15 breastfeeding mothers using pharmacotherapy via the University Hospitals Leuven, the BELpREG project (pregnancy registry in Belgium) or external health facilities. Each request and compound will be evaluated on relevance (ie, added value to available scientific evidence) and feasibility (including access to analytical assays). Participants will be requested to complete at least one questionnaire on maternal and child's general health and collect human milk samples over 24 hours. Optionally, two maternal and one child's blood samples can be collected. The maternal medicine concentration in human milk will be determined along with the estimation of the medicine intake (eg, daily infant dose and relative infant dose) and systemic exposure of the breastfed child. The predictive performance of PBPK models will be assessed by comparing the observed concentrations in human milk and plasma to the PBPK predictions. Ethics and dissemination:This study has been approved by the Ethics Committee Research UZ/KU Leuven (internal study number S67204). Results will be published in peer-reviewed journals and presented at (inter)national scientific meetings. Trial registration number NCT06042803.</p

    Challenges Related to Acquisition of Physiological Data for Physiologically Based Pharmacokinetic (PBPK) Models in Postpartum, Lactating Women and Breastfed Infants—A Contribution from the ConcePTION Project

    Get PDF
    Physiologically based pharmacokinetic (PBPK) modelling is a bottom-up approach to predict pharmacokinetics in specific populations based on population-specific and medicine-specific data. Using an illustrative approach, this review aims to highlight the challenges of incorporating physiological data to develop postpartum, lactating women and breastfed infant PBPK models. For instance, most women retain pregnancy weight during the postpartum period, especially after excessive gestational weight gain, while breastfeeding might be associated with lower postpartum weight retention and long-term weight control. Based on a structured search, an equation for human milk intake reported the maximum intake of 153 mL/kg/day in exclusively breastfed infants at 20 days, which correlates with a high risk for medicine reactions at 2–4 weeks in breastfed infants. Furthermore, the changing composition of human milk and its enzymatic activities could affect pharmacokinetics in breastfed infants. Growth in breastfed infants is slower and gastric emptying faster than in formula-fed infants, while a slower maturation of specific metabolizing enzymes in breastfed infants has been described. The currently available PBPK models for these populations lack structured systematic acquisition of population-specific data. Future directions include systematic searches to fully identify physiological data. Following data integration as mathematical equations, this holds the promise to improve postpartum, lactation and infant PBPK models.</p

    A structured review about the physiology of breastfed infants, with a special interest in the effects on drug absorption and transfer

    No full text
    Differences in maturational physiology between breastfed and formula-fed infants were reported, such as the growth of exclusively breastfed infants. Breastfed infants have a less significant weight loss early in life with afterwards, a slower weight gain. Fragmented data of these differences has been described but have not yet been organized and integrated

    Determining the exposure of maternal medicines through breastfeeding:the UmbrelLACT study protocol - a contribution from the ConcePTION project

    Get PDF
    Introduction:Breastfeeding is beneficial for the health of the mother and child. However, at least 50% of postpartum women need pharmacotherapy, and this number is rising due to the increasing prevalence of chronic diseases and pregnancies at a later age. Making informed decisions on medicine use while breastfeeding is often challenging, considering the extensive information gap on medicine exposure and safety during lactation. This can result in the unnecessary cessation of breastfeeding, the avoidance of pharmacotherapy or the off-label use of medicines. The UmbrelLACT study aims to collect data on human milk transfer of maternal medicines, child exposure and general health outcomes. Additionally, the predictive performance of lactation and paediatric physiologically based pharmacokinetic (PBPK) models, a promising tool to predict medicine exposure in special populations, will be evaluated. Methods and analysis:Each year, we expect to recruit 5-15 breastfeeding mothers using pharmacotherapy via the University Hospitals Leuven, the BELpREG project (pregnancy registry in Belgium) or external health facilities. Each request and compound will be evaluated on relevance (ie, added value to available scientific evidence) and feasibility (including access to analytical assays). Participants will be requested to complete at least one questionnaire on maternal and child's general health and collect human milk samples over 24 hours. Optionally, two maternal and one child's blood samples can be collected. The maternal medicine concentration in human milk will be determined along with the estimation of the medicine intake (eg, daily infant dose and relative infant dose) and systemic exposure of the breastfed child. The predictive performance of PBPK models will be assessed by comparing the observed concentrations in human milk and plasma to the PBPK predictions. Ethics and dissemination:This study has been approved by the Ethics Committee Research UZ/KU Leuven (internal study number S67204). Results will be published in peer-reviewed journals and presented at (inter)national scientific meetings. Trial registration number NCT06042803.</p

    Generic PBPK template for predicting drug concentration time profiles in human breast milk (D3.6)

    No full text
    This deliverable described in the present report reports on the development, evaluation and application of a generic Physiologically-based pharmacokinetic modelling (PBPK) template: To predict medicine concentration time profiles in human milk; To calculate milk-associated medicine doses ingested by neonates and infants

    Generic Workflow to Predict Medicine Concentrations in Human Milk Using Physiologically-Based Pharmacokinetic (PBPK) Modelling—A Contribution from the ConcePTION Project

    Get PDF
    Women commonly take medication during lactation. Currently, there is little information about the exposure-related safety of maternal medicines for breastfed infants. The aim was to explore the performance of a generic physiologically-based pharmacokinetic (PBPK) model to predict concentrations in human milk for ten physiochemically diverse medicines. First, PBPK models were developed for “non-lactating” adult individuals in PK-Sim/MoBi v9.1 (Open Systems Pharmacology). The PBPK models predicted the area-under-the-curve (AUC) and maximum concentrations (Cmax) in plasma within a two-fold error. Next, the PBPK models were extended to include lactation physiology. Plasma and human milk concentrations were simulated for a three-months postpartum population, and the corresponding AUC-based milk-to-plasma (M/P) ratios and relative infant doses were calculated. The lactation PBPK models resulted in reasonable predictions for eight medicines, while an overprediction of human milk concentrations and M/P ratios (>2-fold) was observed for two medicines. From a safety perspective, none of the models resulted in underpredictions of observed human milk concentrations. The present effort resulted in a generic workflow to predict medicine concentrations in human milk. This generic PBPK model represents an important step towards an evidence-based safety assessment of maternal medication during lactation, applicable in an early drug development stage
    corecore