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Abstract: Women commonly take medication during lactation. Currently, there is little information
about the exposure-related safety of maternal medicines for breastfed infants. The aim was to
explore the performance of a generic physiologically-based pharmacokinetic (PBPK) model to predict
concentrations in human milk for ten physiochemically diverse medicines. First, PBPK models were
developed for “non-lactating” adult individuals in PK-Sim/MoBi v9.1 (Open Systems Pharmacology).
The PBPK models predicted the area-under-the-curve (AUC) and maximum concentrations (Cmax) in
plasma within a two-fold error. Next, the PBPK models were extended to include lactation physiology.
Plasma and human milk concentrations were simulated for a three-months postpartum population,
and the corresponding AUC-based milk-to-plasma (M/P) ratios and relative infant doses were
calculated. The lactation PBPK models resulted in reasonable predictions for eight medicines, while
an overprediction of human milk concentrations and M/P ratios (>2-fold) was observed for two
medicines. From a safety perspective, none of the models resulted in underpredictions of observed
human milk concentrations. The present effort resulted in a generic workflow to predict medicine
concentrations in human milk. This generic PBPK model represents an important step towards an
evidence-based safety assessment of maternal medication during lactation, applicable in an early
drug development stage.

Keywords: physiologically-based pharmacokinetic (PBPK) modelling and simulation; in silico;
pharmacokinetics; lactation; breastfeeding; human milk; medicines; milk-to-plasma ratio (M/P ratio);
daily infant dosage; relative infant dose
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1. Introduction

The World Health Organization recommends exclusive breastfeeding for children
up to six months. Breastfeeding plays an important role in the development, health and
survival of infants [1]. In addition, breastfeeding is associated with positive effects on the
health and well-being of the mother. More than 50% of postpartum women need periodic
(e.g., infections, pain) or chronic (e.g., depression, epilepsy) medicines [2]. Although the
concentration of most medicines in human milk is expected to be low, there is a lack of
robust information [3]. Currently, there is a huge knowledge gap regarding the exposure-
related safety of maternal medicines for the breastfed infant. This may expose the infant to
(unknown) health risks when medicines are used off-label during lactation. Alternatively,
women might discontinue breastfeeding, or delay the initiation of their-much needed
pharmacotherapy.

Human lactation studies are costly and associated with ethical and practical challenges.
Currently, clinical data available is sparse, and comes mostly from case studies. Non-clinical
methods have the potential to generate quantitative data in an early (drug development)
stage, and thus inform the label [4]. However, validated non-clinical methods are currently
not available. Animal experiments have been performed (mostly in rodents) but have not
always been successful in predicting human milk exposure due to species differences in
transporters, metabolizing enzymes, and lactation physiology [5]. Similarly, in vitro models
have been shown to be promising for the study of medicine transfer across the blood–milk
cellular barrier, but characterization of the models has remained very limited.

Physiologically-based pharmacokinetic (PBPK) models are in silico mechanistic mod-
els for bottom-up prediction of the pharmacokinetic profile of a medicine. PBPK models
require medicine-related input data (e.g., LogP, solubility, permeability), as well as input
parameters related to the (patho)physiology of the target population (e.g., blood flow
or organ volume). PBPK modelling has already been applied for predicting PK during
lactation [6–10].

A first type of model assumes that there is a rapid equilibrium between plasma
and human milk. This implies that the concentration of a medicine in human milk can
be calculated based on the plasma concentration and milk-to-plasma ratio (M/P ratio).
A commonly used method to calculate the M/P ratio is the phase distribution model,
assuming that only the unbound and unionized molecular species will cross the blood–milk
barrier [7,8,11,12]. An observed M/P ratio can be used as input for the PBPK model if
clinical data in plasma and human milk from lactating women are available, but currently
these data are not available for most medicines.

Alternatively, the local permeability of medicines at the blood–milk barrier can be
implemented in the model. This approach was followed to simulate plasma and human
milk concentrations of ondansetron. It was assumed that the permeability of ondansetron
to and from human milk was equal, and that the partitioning was assumed to be instanta-
neous [10]. For some medicines, transporters or carrier proteins present in the membranes
of the mammary epithelial cells of the blood–milk barrier might affect the local permeability.
This approach was, for example, used to predict medicine concentrations of breast cancer re-
sistance protein (BCRP, ABCG2) substrates in human milk. Here, some lactation parameters
(e.g., scaling factor for difference between in vivo effective permeability between maternal
blood and breast cell and in vitro Caco-2 or MDCK permeability, intrinsic clearance of
BCRP for whole breasts) were estimated via parameter optimization [9]. This approach is
also called the “middle-out” approach. However, a “middle-out” approach does require
the availability of observed clinical data.

The findings reported in this study result from recent efforts within the Innovative
Medicines Initiative (IMI) project ConcePTION, which aims to reduce uncertainty about the
effects of medicines used during pregnancy and lactation. The hypothesis was that PBPK
models can be applied for a full “bottom-up” prediction (i.e., in the absence of observed
M/P ratios or measured in vivo concentrations in human milk) of the pharmacokinetic
profile of medicines in human milk, and to calculate the daily infant dosage ingested by the
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infant via breastfeeding. PBPK models were developed for non-lactating adult individuals,
and extended to include the lactation physiology. To our knowledge, this is the first study
where a generic PBPK workflow for full bottom-up prediction of human milk concentrations
in a three-months postpartum population was applied to ten physiochemically diverse
medicines.

2. Materials and Methods

2.1. Model Medicines

Ten medicines were selected based on physicochemical diversity (based on the chemi-
cal structures and physicochemical properties as described in Table 1) and the availability
of observed in vivo human data in the lactating population (either the availability of data
in the literature, or clinical studies that are currently ongoing within the ConcePTION
project) for the evaluation of the predictive performance of the PBPK models. The selected
medicines were amoxicillin, caffeine, cetirizine, levetiracetam, metformin, nevirapine, ser-
traline, valproic acid, tenofovir, zidovudine. The Tanimoto coefficients were calculated via
ChemMine tools (https://chemminetools.ucr.edu/downloads/ (accessed on 30 January
2023)) based on atom pair and maximum common substructure similarities [13].

Table 1. Physicochemical properties of the ten model medicines.

Medicine MW BCS Class pKa LogP HBD HBA PSA fu Main Elimination Route

Amoxicillin 365.40 I 3.23 (acid)
7.43 (base) 0.87 4 7 158 0.85 Renal

Caffeine 194.20 I 0.80 (base) −0.07 0 3 58.44 0.70 Hepatic (CYP1A2)

Cetirizine 388.90 III
2.9 (acid)
8.0 (base)
2.2 (base)

1.50 1 5 53.00 0.07 Renal

Levetiracetam 170.21 I - (neutral) −0.60 1 2 63.40 0.90 Esterases

Metformin 129.16 III 2.80 (base)
11.50 (acid) −1.43 3 1 91.50 1.00 Renal

Nevirapine 266.30 II 2.8 (base) 1.93 1 4 58.10 0.40 Hepatic (CYP3A4)
Sertraline 306.00 II 9.43 (base) 5.5 1 1 12.03 0.023 Hepatic (CYPs)

Tenofovir 287.21 III
1.35 (acid)
6.70 (acid)
3.80 (base)

1.87 3 8 136.38 0.993 Renal

Valproic acid 144.21 I 4.80 (acid) 2.75 1 2 37.30 0.14 Hepatic (UGTs)
Zidovudine 267.24 I 9.7 (acid) 0.05 2 6 108.30 0.80 Hepatic (UGT2B7)

Molecular weight (MW, g/mol); biopharmaceutical classification system (BCS); acid dissociation constant (pKa);
lipophilicity as Log10 of the partition coefficient between octanol and water (LogP); hydrogen bound donors
(HBD); hydrogen bound acceptors (HBA); polar surface area (PSA, Å2); fraction unbound in human plasma (fu).
References to sources can be found in Supplementary Materials.

2.2. Generic Workflow

The generic workflow established for building the lactation PBPK models is described
in Figure 1.

The PBPK models were developed using PK-Sim and MoBi version 9.1, available as
freeware under the GNU General Public License version 2 (GPLv2) license through Open
Systems Pharmacology. An excellent tutorial about the underlying principles and generic
procedures for building and evaluating a PBPK models has been published [14]. First,
PBPK models for “non-lactating” adult individuals were constructed, and the predictive
performance was evaluated using observed data for adult volunteers or patients from the
literature. Data extraction from the published literature was done using WebPlotDigitizer
(https://automeris.io/WebPlotDigitizer/ (accessed between August 2020 and December
2022), versions 4.3, 4.4, 4.5 and 4.6). Next, the PBPK models were extended to lactation
PBPK models. The plasma and human milk concentrations were simulated and compared
to observed data for postpartum women. When the time of the sample with respect to the
last dose was not mentioned, samples were assumed to be trough samples at steady state
(shown as open circles on the plots). The simulated median human milk concentration-
time profiles were used to calculate the infant doses via breastfeeding. Plots were created
using R for Windows (v. 4.2.2) and Rstudio (v. 2022.07.2+576) (R Foundation for Statistical
Computing).

https://chemminetools.ucr.edu/downloads/
https://automeris.io/WebPlotDigitizer/
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Figure 1. Workflow used in the present study to develop and evaluate the lactation PBPK models.

2.3. PBPK Models for “Non-Lactating” Adults

The first step was to construct a PBPK model for “non-lactating” adult individuals.
Medicine-specific parameters (e.g., physicochemical properties) were combined with study
population-specific physiological parameters to predict the pharmacokinetic profile of a
medicine in “non-lactating” adult individuals. A first set of observed plasma concentration-
time profiles in healthy volunteers and/or patients, containing 1–7 studies with intravenous
(IV) and oral (PO) administration (i.e., a training dataset), was used to build the model.
For some medicines (levetiracetam, metformin, tenofovir, valproic acid and zidovudine),
the fraction excreted in urine (and the fraction metabolized) were also used for model
development. Studies with intravenous administration were first used to capture distri-
bution, metabolism, and excretion processes, followed by oral administration to capture
absorption. If necessary, parameters were estimated to fit the observed data, implying
a “middle-out” approach. The predictive performance of the model was then evaluated
with a second dataset, typically containing data from multiple studies (i.e., verification
dataset). The generally applied acceptance criterium was a less than two-fold misprediction
in plasma area-under-the-curve (AUC) and maximal concentration (Cmax) of medicine for
the PBPK models for “non-lactating” adult individuals, although case-by-case judgements
were used for data interpretation and acceptance/rejection of the predictions [15]. For
a single dose administration, the prediction error was calculated using the AUC from
the time of administration until the time of the last observed datapoint. For a multiple
dose administration, the AUC was calculated for a dosing interval at steady state. If the
observed data was only available for a specific part of the dosing interval, a partial AUC
was calculated using Rstudio (DescTools v. 0.99.47.). Details about the model development
and evaluation of the predictive performance can be found in Supplementary Files S1–S10.

2.4. Lactation PBPK Models

The next step was to extend the PBPK models to reflect the physiology of the ‘lac-
tating state’ in three months postpartum population. PK-Sim and MoBi (Open Systems
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Pharmacology) are an open-source platform that has been extensively used to build PBPK
models for different applications. The major benefit of the Open Systems Pharmacology
suite is the flexibility to adapt the PBPK model structure in MoBi. The PBPK model for
“non-lactating” adult individuals was exported to MoBi, where the spatial structure was
adapted to represent a postpartum woman. The final spatial structure (Figure 2) contains
a breasts compartment, and a compartment representing the human milk. The workflow
followed to add a breasts compartment was based on the tutorial on how to extend a model
to a special population in pregnancy [16]. Briefly, the breasts compartment (including
physiological parameters, for example the fractions of the different sub-compartments) is a
clone of the heart compartment available in PK-Sim.

Figure 2. Model structure for the lactation model in PK-Sim and MoBi. The median
(interquartile range) breasts volume and specific blood flow rate were 1.0 (0.7–1.5) L and
27.0 (26.7–27.3) mL/min/100 g organ. The blood cell volume was specified as the fraction vascular
(0.14) multiplied with the hematocrit and the total breasts volume. The interstitial volume was the
fraction interstitial (0.10) multiplied with the total breasts volume. The intracellular volume was
the fraction intracellular (0.76) multiplied with the total breasts volume. The plasma volume was
the fraction vascular (0.14) multiplied with 1-hematocrit and the total breasts volume. The human
milk volume was 0.5 L and a geometric standard deviation of 1.16 was assumed for population
simulations.

Information regarding the extent and rate of passage of medicines across the blood–
milk barrier is very limited. Therefore, it was decided to rely on a previously reported
semi-mechanistic milk–plasma model, which allows for the calculation of the bidirectional
clearance values between plasma and human milk based on physicochemical properties
of the medicines [17]. This semi-mechanistic model was implemented in the lactation
PBPK model structure to allow bottom-up prediction of human milk concentrations. The
human milk was directly connected to the plasma compartment, which was consistent with
the structure of the semi-mechanistic model [17]. The volume of the milk compartment
was fixed to 0.5 L, which was the volume used in the semi-mechanistical model to derive
the equations for the bidirectional clearance values [17]. The amount (N) transferred to
human milk, and from human milk, were specified in the passive-transport building block
using Equations (1) and (2), respectively. It was assumed that medicine-metabolizing
pathways were not present in the human milk, based on the fact that there is no evidence
for CYP-mediated metabolism.

dNmilk
dt

= Cplasma ∗ fu, plasma ∗ CLsec (1)
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dNplasma

dt
= Cmilk ∗ fu, milk, total ∗ CLre (2)

Hence, in the lactation PBPK models, the transfer of medicines to human milk and
reuptake from human milk were parametrized by the respective secretion (CLsec) and
reuptake (CLre) clearance according to the model of Koshimichi et al. (2011) [17]. CLsec
(Equation (3)) is calculated based on the polar surface area (PSA), molecular weight (MW)
and the octanol water partition coefficient (LogP) and octanol:buffer (pH 7.4) distribution
coefficient (LogD7.4). CLre (Equation (4)) is calculated based on LogP and the number of
hydrogen bond donors (HBD).

log(CLsec) = −3.912 − 0.015 ∗ PSA + 3.367 ∗ log(MW)− 0.164 ∗ log
(

P
D7.4

)

(3)

log(CLre) = 2.793 + 0.179 ∗ LogP − 0.132 ∗ HBD (4)

The lactation PBPK models also required knowledge of the unbound fractions of the
medicines in plasma and milk. The equations described by Atkinson and Begg (1990)
were used to calculate the (‘total’) free fraction of the medicines in ‘whole’ human milk
(fu, milk, total, Equation (5)). This equation is based on the unbound fraction in skimmed milk
(fu skimmed milk, Equation (6)) or the binding to milk protein, and the partition coefficient
between milk lipid and ultrafiltrate (Pmilk, Equation (7)). The fu, skimmed milk is based on
the relationship between plasma-protein binding and milk-protein binding. Pmilk was
calculated from the octanol:buffer (pH 7.4) distribution coefficient [12].

fu, milk, total =
1

0.955
fu, skimmed milk

+ 0.045 ∗ Pmilk
(5)

fu, skimmed milk =
fu, plasma

0.448

(6.94 ∗ 10−4)
0.448

+ fu, plasma
0.448

(6)

LogPmilk = −0.88 + 1.29 ∗ LogD7.2 (7)

All the equations were incorporated in the spatial structure and passive-transport
building blocks in MoBi. Therefore, the same workflow can be applied to other medicines
requiring only three physicochemical parameters as input (i.e., LogP, PSA and HBD). A
step-by-step manual on how to apply this generic workflow to build a lactation PBPK model
in PK-Sim and MoBi, Open Systems Pharmacology, as well as the required spatial structure
and passive transports are available from Github (https://github.com/translatPK-KUL/
LactationPBPK).

PBPK models were developed and evaluated in a three-months postpartum pop-
ulation. Job et al. (2021) previously published a postpartum population, which can
be included in PK-Sim [10]. The population contains the physiology of women from
the time of delivery (represented by age = 30 years) until two-years postpartum (repre-
sented by age = 32 years). In PK-Sim, a three-months postpartum maternal population
was created (n = 1000, age = 30.2–30.3 years) from this postpartum population by Job et al.
(2021) [10]. The median breast volume and specific blood-flow rate were 1.0 (0.7–1.5) L and
27.0 (26.7–27.3) mL/min/100 g organ. A geometric standard deviation of 1.16 was added
for the milk volume (0.5 L) in the population. The administration schedule was adapted to
the relevant study designs, as reported in the literature. The median (5th–95th percentile)
concentration in plasma and human milk were simulated. For calculating the M/P ratio, as
well as the infant dose, a simulation at steady state with a relatively high common-dosing
regimen (~worst case scenario) was selected for each compound. The milk-to-plasma (M/P)

https://github.com/translatPK-KUL/LactationPBPK
https://github.com/translatPK-KUL/LactationPBPK
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ratio (Equation (8)) was calculated based on the predicted median area-under-the-curve
(AUC) values for a dosing interval at steady state in plasma and milk.

M/Pratio =
AUChuman milk

AUCplasma
(8)

Information about the dose or time after last dosing for lactation is often missing.
Therefore, the evaluation of the predictive performance was case-by-case and mainly based
on visual inspection of the predicted versus observed concentration-time profiles in plasma
and human milk, and whether the observed data in human milk were within the 5th–95th
percentile of the population prediction, in view of the availability and/or quality of the
data.

2.5. Infant Dose Calculation

The median simulation at steady state, with a relatively high common dosing regimen
(~worst case scenario), was selected to calculate the daily infant dose via breastfeeding.
The maximum concentration in human milk (Cmax, milk) at three-months postpartum was
simulated at steady state. The average concentration in human milk (Cave, milk) was cal-
culated by dividing the AUC for a dosing interval at steady state by the dosing interval.
The daily human milk intake in infants at this postpartum time interval was assumed to
be 150 mL/kg body weight [18]. The daily infant dosage of maternal medicine received
via breastfeeding (DID) was calculated using the average, as well as the maximum concen-
tration in human milk (Cmilk in Equation (9)). Similarly, the relative infant dose (RID) was
calculated using the average, as well as the maximal infant daily dosage in comparison
to the daily maternal dosage (Equation (10)). The maternal weight was assumed to be
60.3 kg, representing the average three-months postpartum individual from the population
by Job et al. (2021) [10]. In addition, if the medicine is also used in children, the daily infant
dosage via breastfeeding was also compared to the recommended dose (daily therapeutic
infant dosage) prescribed and administered to infants at the same age for therapeutic use
(RIDtherapeutic, Equation (11)).

Daily infant dosage (DID,
mg
kg

day
) = C milk ∗ 150 mL/kg/day (9)

Relative infant dose (RID, %) =
Daily infant dosage

Daily maternal dosage
∗ 100% (10)

Relative therapeutic infant dose
(

RIDtherapeutic, %
)

=
Daily infant dosage

Daily therapeutic infant dosage
∗ 100% (11)

3. Results

3.1. Model Medicines

Table 1 lists the physicochemical properties of the selected medicines. The Tanimoto
coefficients were 0.003–0.28 based on atom-pair similarities, and 0.08–0.42 based on the
maximum common substructure.

3.2. PBPK Model for “Non-Lactating” Adults

A PBPK model for IV administration of amoxicillin was taken from the literature,
and extended for oral administration [6]. The metformin PBPK model for IV and oral
administration was taken from the literature [19]. For caffeine, the built-in ‘predefined
template’ available in PK-Sim was used. For the other compounds, the PBPK models
were developed for non-lactating female or male healthy adult and/or patient individuals.
Details about the model development and evaluation of the predictive performance are
described in medicine-specific reports available in Supplementary Files S1–S10. Figure 3



Pharmaceutics 2023, 15, 1469 8 of 24

shows the relative predicted/observed ratios for AUC and Cmax for the PBPK models
using either the training or verification datasets.

Figure 3. Individual predicted/observed ratios for: (a) the area-under-the-curve from the first to
the last observed concentration in plasma (AUC); and (b) maximal plasma concentration (Cmax)
of the selected medicines using developed physiologically-based pharmacokinetic (PBPK) models
for “non-lactating” adult individuals. Individual predicted/observed ratios are shown for model
building (red circles) and model verification (blue circles) data. Black lines represent the 0.5- and
two-fold prediction error ratio. The geometric mean fold error for AUC and Cmax was within two-fold
prediction error for all medicines.

The PBPK models were able to adequately simulate the plasma concentration-time
profiles of the medicines in healthy individuals and/or patients. The geometric mean
fold errors for AUC and Cmax were within a two-fold prediction error for all medicines.
IndiObserved Cmax and AUC were all predicted within a two-fold error for amoxicillin,
caffeine, cetirizine, levetiracetam, metformin, nevirapine, tenofovir and zidovudine. The
PBPK model of sertraline was able to adequately predict the AUC and Cmax for 24 out
of 27 the simulations. It is described in the literature that there is a high inter-individual
variability in the pharmacokinetic profiles for sertraline, which is partly explained by the
involvement of several enzymes (CYP2D6, CYP2B6, CYP3A4, CYP2C9, CYP2C19, and
CYP2E1) with different genotypes in the metabolism [20]. For valproic acid, the PBPK
model was able to describe the plasma concentration in 59 out of 62 of the simulations.

3.3. Lactation PBPK Models

The PBPK models were extended to lactation PBPK models for all ten medicines.
Details about the model development and all plasma concentration-time profile plots simu-
lated for lactation are described in medicine-specific reports available in Supplementary
Files S1–S10. The predicted secretion and reuptake clearance values are shown in Table 2
for all selected medicine. Figure 4 shows the predicted reuptake clearance values against
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predicted secretion clearance values for the original dataset reported by Koshimichi et al.
(group A–D), as well as for the medicines selected for development of the PBPK mod-
els in the present study (group E) [17]. The CL values for the 10 model medicines vary
within the range of CL values calculated by Koshimichi et al. (2011) [17]. The lactation
PBPK models were able to predict the pharmacokinetic profile in human milk adequately
(without estimation or fitting of parameters for lactation) for eight out of ten medicines
i.e., amoxicillin, caffeine, cetirizine, levetiracetam, metformin, sertraline, valproic acid
and zidovudine. For nevirapine and tenofovir, although the 5th–95th percentile of the
population simulation did include most of the observed datapoints, it is clear by visual
inspection that there is an overprediction (>2-fold) of the human milk concentration (i.e.,
the observed milk concentrations are lower). Overall, some datapoints are slightly above
the 5th–95th percentile, likely due to the fact that all samples were assumed to be trough
samples when information about the time respective to the last dose was missing. The M/P
ratios are shown in Table 3.

Table 2. Predicted bidirectional clearance values between plasma and human milk.

Medicine Secretion Clearance (mL/h) Reuptake Clearance (mL/h)

Amoxicillin 46.90 263.47
Caffeine 824.02 603.21

Cetirizine 3031.27 1922.74
Levetiracetam 445.38 357.77

Metformin 21.73 138.37
Nevirapine 2413.86 1015.01
Sertraline 8925.70 3597.49
Tenofovir 51.96 129.00

Valproic acid 248.39 1423.15
Zidovudine 431.04 345.10

Table 3. Milk-to-plasma (M/P) ratio.

Medicine Predicted M/P Ratio 1 Observed M/P Ratio Reference

Amoxicillin 0.15 0.04–0.06 2 [21]
Caffeine 0.95 0.52–1.16 [22–24]

Cetirizine 0.12 0.2 3 [25,26]
Levetiracetam 1.11 0.46–1.79 [27–30]

Metformin 0.16 0.13–1.00 [31–34]
Nevirapine 2.68 0.2–1.5 [35–41]
Sertraline 1.62 0.12 4–5.2 [42–50]
Tenofovir 0.40 0.025 4–0.11 [39,51–53]

Valproic acid 0.03 0.013 4–0.25 [54–57]
Zidovudine 1.10 0.3–3.21 [35,36,40,58,59]

1 M/P ratios were calculated based on predicted area-under-the-curve (AUC) in human milk and plasma. 2 For
amoxicillin, only three single time point based M/P values were reported at the time of the peak concentration
in plasma. However, the peak in human milk is delayed compared to plasma, potentially leading to an under-
estimation of the M/P ratio. Therefore, the M/P ratio was calculated using the peak concentration in plasma
and the highest measured concentration in human milk. Alternatively, non-compartmental analysis was applied
to estimate the area-under-the-curve (AUC) based M/P ratio, assuming that the elimination slope in human
milk is identical to plasma. 3 Plasma concentrations in lactating women are not available. The M/P ratio was
calculated using the observed steady-state AUC in human milk (0.50 mg*h/L), and the observed plasma AUC
in non-lactating adults receiving the same dosing regimen (2.50 mg*h/L). 4 Some studies report human milk
concentrations below the limit of quantitation.
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Figure 4. Predicted reuptake clearance (CLre) and secretion clearance (CLsec) values for medicines
included in the original dataset as predicted by Koshimichi et al. (2011) in the original publication [17]
for medicines with: (A) net reuptake (i.e., total free fraction multiplied with reuptake clearance)
values < 5000 mL/h, total free fraction in milk determined experimentally and no evidence for
transporter-mediated transfer; (B) net reuptake values < 5000 mL/h, total free fraction in milk
determined experimentally and transporter-mediated transfer; (C) net reuptake values < 5000 mL/h
and total free fraction in milk predicted; (D) net reuptake > 5000 mL/h; and (E) calculated reuptake
and secretion clearance values for medicines for which PBPK models were developed in the present
study.

3.3.1. Amoxicillin

The amoxicillin PBPK model results in a reasonable prediction of the plasma and milk
concentrations of amoxicillin, with most observations within the 5th–95th percentile of
the population prediction (Figure 5). A dosing regimen of 1000 mg PO three times daily
was applied to calculate milk transfer and infant dose. The predicted M/P for amoxicillin
was higher than the reported M/P ratios (0.014–0.043) [21]. However, the reported M/P
ratios were three single time point M/P ratios around the time of Cmax in plasma. An
AUC-based M/P ratio was not available in the literature. As the milk peak concentration is
typically delayed with respect to the plasma peak concentration, this might explain why
the predicted AUC-based M/P ratio is lower than the reported M/P ratios. Indeed, if
we use the highest measured concentration in plasma (14.60 µg/mL) and human milk
(0.81 µg/mL) to calculate the M/P ratio (0.06), the M/P ratio is only 2.5-fold overpredicted.
Using non-compartmental analysis (NCA), and assuming that the elimination slope in
human milk is identical to the slope observed in plasma, an AUC-based M/P ratio of 0.04
was calculated (4-fold prediction error).
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Figure 5. Median (solid line) and 5th–95th% prediction interval (shaded area) for: (a) oral admin-
istration of amoxicillin 1000 mg as single dose [21]; and (b) oral administration of amoxicillin 1000
mg thrice daily in plasma (red) and human milk (blue). Circles represent observed data from the
literature with standard deviation (error bars) [21].

3.3.2. Caffeine

The caffeine PBPK model results in a reasonable prediction of the plasma and milk
concentrations of caffeine, with most observations within the 5th–95th percentile of the
population prediction (Figure 6). There is quite some variability in the observed data.
Importantly, some of the studies were performed at the home of the participants and relied
on the subjects to report the time and amount of each dose. In some participants, caffeine
was detectable in human milk before they reported the first dose. Therefore, it cannot
be excluded that there were differences in the actual dosing and/or sampling times from
the times reported by the participants. A dose regimen of 100 mg PO, thrice daily, was
applied to calculate milk transfer and infant dose. The predicted M/P ratio was within the
observed range.

3.3.3. Cetirizine

The cetirizine PBPK model results in a reasonable prediction of the plasma and milk
concentrations of cetirizine, with most observations within the 5th–95th percentile of the
population prediction (Figure 7). A dosing regimen of 10 mg PO daily was applied to
calculate milk transfer and infant dose. An observed M/P ratio could not be found in
the literature. Therefore, the M/P ratio was calculated using the observed steady-state
AUC in human milk (0.50 mg*h/L), and the observed plasma AUC in non-lactating adults
receiving the same dosing regimen (2.50 mg*h/L) [25,26]. The resulting M/P ratio was 0.2,
which is similar to the predicted M/P ratio (0.12).

3.3.4. Levetiracetam

The levetiracetam PBPK model results in a reasonable prediction of the plasma and
milk concentrations of levetiracetam, with most observations within the 5th–95th percentile
of the population prediction (Figure 8). A dosing regimen of 1500 mg PO twice daily was
applied to calculate milk transfer and infant dose. The predicted M/P ratio is within the
observed range.
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Figure 6. Median (solid line) and 5th–95th% prediction interval (shaded area) for (a) oral admin-
istration of caffeine 80 mg as single dose [60]; (b) oral administration of caffeine 100 mg as single
dose [23]; (c) oral administration of 100 mg caffeine as multiple dose [61]; and (d) oral administration
of caffeine 100 mg thrice daily in plasma (red) and human milk (blue). Circles represent observed
data from the literature [23,60,61].

Figure 7. Median (solid line) and 5th–95th% prediction interval (shaded area) for oral administration
of cetirizine 10 mg daily in plasma (red) and human milk (blue). Circles represent observed data
from the literature [25].
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Figure 8. Median (solid line) and 5th–95th % prediction interval (shaded area) for: (a) oral adminis-
tration of levetiracetam 1000 mg as multiple dose [30,62]; (b) oral administration of levetiracetam
2500 mg as multiple dose [28,30]; (c) oral administration of 2525 mg levetiracetam as multiple
dose [27]; and (d) oral administration of levetiracetam 1500 mg bidaily [28,30] in plasma (red) and
human milk (blue). Circles represent observed data from the literature [27,28,30,62]. Datapoints for
which the time of sampling with respect to the last dose was not reported are indicated with open
circles.

3.3.5. Metformin

The metformin PBPK model results in a reasonable prediction of the plasma and milk
concentrations of metformin (Figure 9). After a single dose administration, the elimination
phase from the human milk is overpredicted. This may be explained by organic cation
transporter involvement in the secretion of metformin into human milk or due to complex
partitioning into blood cells. Importantly, this effect is less pronounced after multiple
dosing regimens, which are representative of the clinical practice. A dosing regimen of
500 mg PO twice daily was applied to calculate milk transfer and infant dose. After
bidaily administration of metformin, most observations are predicted within the 5th–95th
percentile of the population prediction. The M/P ratio of metformin is within the observed
range, although at the lower end.
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Figure 9. Median (solid line) and 5th–95th % prediction interval (shaded area) for: (a) oral adminis-
tration of metformin 500 mg as single dose [33]; (b) oral administration of metformin 1500 mg/day
PO [32]; (c) oral administration of metformin 500 mg thrice daily [34]; and (d) oral administration
of metformin 500 mg bidaily [31,33,63] in plasma (red) and human milk (blue). Circles represent
observed data from the literature with standard deviation (error bars) [31–34,63]. Datapoints for
which the time of sampling with respect to the last dose was not reported are indicated with open
circles.

3.3.6. Nevirapine

The nevirapine PBPK model results in an overprediction of the human milk concentra-
tions of nevirapine (Figure 10). A dosing regimen of PO 200 mg twice daily was applied to
calculate milk transfer and infant dose. The M/P ratio of nevirapine was overpredicted (2-
to 13-fold), which is in line with the overprediction in human milk concentration.

3.3.7. Sertraline

The sertraline PBPK model results in a reasonable prediction of the plasma and milk
concentrations of sertraline, with most observations within the 5th–95th percentile of the
population prediction (Figure 11). There is a high variability in observed data, similar
to what was observed in the PBPK model for non-lactating adult individuals. A dosing
regimen of PO 50 mg daily was applied to calculate milk transfer and infant dose. The
M/P ratio of sertraline is within the broad range of observed M/P ratios.
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Figure 10. Median (solid line) and 5th–95th % prediction interval (shaded area) for oral administration
of nevirapine 200 mg bidaily in plasma (red) and human milk (blue). Circles represent observed data
from the literature [35–38,40,41,59,64]. Datapoints for which the time of sampling with respect to the
last dose was not reported are indicated with open circles.

Figure 11. Median (solid line) and 5th–95th % prediction interval (shaded area) for: (a) oral adminis-
tration of sertraline 87.5 mg/day [44]; (b) oral administration of sertraline 25 mg/day [46]; (c) oral
administration of sertraline 50 mg/day [42,43,46–49,65,66]; and (d) oral administration of sertraline
64 mg/day [45] in plasma (red) and human milk (blue). Circles represent observed data from the
literature with standard deviation (error bars) [42–44,46–49,65,66]. Datapoints for which the time of
sampling with respect to the last dose was not reported are indicated with open circles.
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3.3.8. Tenofovir

The tenofovir PBPK model results in an overprediction of the human milk concen-
trations of tenofovir (Figure 12). A dosing regimen of 300 mg PO daily was applied to
calculate milk transfer and infant dose. The M/P ratio of tenofovir was overpredicted (4-
to 16-fold), which is in line with the overprediction in human milk concentration.

Figure 12. Median (solid line) and 5th–95th % prediction interval (shaded area) for oral administration
of tenofovir 300 mg daily in plasma (red) and human milk (blue). Circles represent observed data
from the literature [39,51–53,67]. Datapoints for which the time of sampling with respect to the last
dose was not reported are indicated with open circles.

3.3.9. Valproic Acid

The valproic acid PBPK model results in a reasonable prediction of the plasma and
milk concentrations of valproic acid, with most observations within the 5th–95th percentile
of the population prediction (Figure 13). A dosing regimen of 2100 mg PO daily was
applied to calculate milk transfer and infant dose. The M/P ratio was within the observed
range.

3.3.10. Zidovudine

The zidovudine PBPK model results in a reasonable prediction of the plasma and milk
concentrations of zidovudine, with most observations within the 5th–95th percentile of
the population prediction (Figure 14). A dosing regimen of 300 PO mg twice daily was
applied to calculate milk transfer and infant dose. The M/P ratio was in agreement with
the observed range.

3.4. Infant Dose Calculation

The infant dose was calculated based on the simulated concentration-time profiles in
human milk at steady state. Table 4 shows the daily infant dose (DID, mg/kg/day) and
relative infant dose (RID, %) that the infant receives via breastfeeding during maternal
pharmacotherapy at steady state. The DID was also compared to a common dosing
regimen given to infants for therapeutic reasons, if available (Table 5). The RID received
via breastfeeding was very low (<1%) for amoxicillin, metformin, sertraline and tenofovir
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and low (<10%) for caffeine, cetirizine, valproic acid, and zidovudine. Levetiracetam
had a RID slightly above 10% and nevirapine had a RID around 40%. In addition, the
DID for all medicines was well below (<25%) the common dosing regimens given to
infants for therapeutic reasons. Importantly, if the concentration in human milk is not
accurately predicted (i.e., presently the milk concentrations of nevirapine and tenofovir are
overpredicted), the infant exposure should be interpreted with caution.

Figure 13. Median (solid line) and 5th–95th % prediction interval (shaded area) for: (a) oral
administration of valproic acid 1500 mg/day [57]; (b) oral administration of valproic acid
11.3 mg/kg/day [54]; (c) oral administration of valproic acid 9.6 mg/kg/day [55]; and (d) oral
administration of valproic acid 2100 mg/day [57] in plasma (red) and human milk (blue). Circles
represent observed data from the literature [54,55,57]. Datapoints for which the time of sampling
with respect to the last dose was not reported are indicated with open circles.
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Figure 14. Median (solid line) and 5th–95th % prediction interval (shaded area) for oral administration
of zidovudine 300 mg bidaily in plasma (red) and human milk (blue). Circles represent observed
data from the literature [35,36,40,58,59]. Datapoints for which the time of sampling with respect to
the last dose was not reported are indicated with open circles.

Table 4. Predicted daily infant dosage (DID, mg/kg/day), and relative infant dose (RID, %).

Medicine

Daily Infant Dosage Based on Average
Concentration

(mg/kg/day)
(Relative Infant Dose)

(%)

Daily Infant Dosage Based on Maximal
Concentration

(mg/kg/day)
(Relative Infant Dose)

(%)

Amoxicillin 0.12
(0.24%)

0.19
(0.39%)

Caffeine 0.30
(5.98%)

0.41
(8.17%)

Cetirizine 0.002
(1.24%)

0.01
(3.62%)

Levetiracetam 6.16
(12%)

7.92
(16%)

Metformin 0.02
(0.10%)

0.02
(0.14%)

Nevirapine * 2.43
(37%)

2.78
(42%)

Sertraline 0.005
(0.63%)

0.01
(0.72%)

Tenofovir * 0.01
(0.15%)

0.01
(0.21%)

Valproic acid 0.52
(1.50%)

0.85
(2.44%)

Zidovudine 0.04
(0.40%)

0.12
(1.16%)

* DID (RID) should be interpreted with caution as human milk concentration-time profile was overpredicted.
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Table 5. Daily infant dosage as percentage of common therapeutic infant dosages.

Medicine
Therapeutic Dosage Used as

Reference (mg/kg/day)

Daily Infant Dosage Based on
Average Concentration as
Percentage of Therapeutic

Dosage (%)

Daily Infant Dosage Based
on Maximal Concentration

as Percentage of Therapeutic
Dosage (%)

Amoxicillin 50 0.24 0.39
Caffeine 1 5 5.96 8.13
Cetirizine 0.5 0.41 1.20

Levetiracetam 40 15.40 19.79
Metformin - - -

Nevirapine 2 12 20.23 23.16
Sertraline - - -

Tenofovir 2 6.5 0.12 0.16
Valproic acid 40 1.31 2.12
Zidovudine 24 0.17 0.48

1 Caffeine is administered only to preterm infants.; 2 Daily infant dosage and percentage of therapeutic dosage
should be interpreted with caution as human milk concentration-time profile was overpredicted.

4. Discussion

Ten physiochemically diverse model medicines with different elimination pathways
were selected to evaluate the predictive performance of newly developed lactation PBPK
models by comparing the model-based predictions of the human milk concentration-time
profiles with clinical observations from the literature. The lactation PBPK models were able
to predict the pharmacokinetic profile in human milk reasonably (without estimation or
fitting of parameters for lactation) for eight of the ten medicines: amoxicillin, cetirizine,
caffeine, levetiracetam, metformin, sertraline, valproic acid and zidovudine. For nevirapine
and tenofovir, there was an overprediction of the human milk concentration. At the same
time, from a safety perspective, it is reassuring that no underpredictions for any of the
compounds were obtained. A limitation of the current study was the lack of prospective
clinical data in the lactating population, to thoroughly evaluate the predictive performance
of the PBPK models.

The dose received via breastfeeding for all medicines that were adequately predicted
in human milk were low, especially when compared to common dosing regimens given
to infants for therapeutic reasons. In addition, whether the infant will develop any (toxic)
effect from the medicine does not only depend on the dose received via breastfeeding,
but also on the absorption after oral ingestion, as well as on the distribution, metabolism,
excretion, and pharmacodynamic profile in the pediatric population. Connecting the PBPK
models to infant PBPK models would allow the daily infant dosage via breastfeeding to
be used as dosing regimen for a infant PBPK model. This would allow for the prediction
of infant systemic exposure based on absorption, distribution, metabolism, and excretion
in the infant, taking ontogeny into account. The availability of already existing infant
PBPK models describing PK after ‘direct’ dosing in these populations will be an important
advantage, although modifications might be needed to represent the breastfed-infant
physiology.

This is the first time that lactation PBPK models have been developed according
to the same framework in PK-Sim for a total of ten model medicines. The approaches
described below can be used to further improve and refine the predictive performance of
these models:

First, the quality of the lactation PBPK models is dependent on the quality of the
PBPK models for “non-lactating” adult individuals. The PBPK models were developed and
evaluated using clinical data for both female and male individuals. Unfortunately, only a
single study was found that studied the differences between female and male patients for
three medicines (nevirapine, sertraline and valproic acid), and no studies were found for
the other medicines. Therefore, it was not possible to fully evaluate the ability of the PBPK
models to capture sex differences in PK. The PBPK models can be improved further when
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additional mechanistic insights (e.g., in vitro data for metabolism) or high-quality clinical
data becomes available.

The predictions will also improve by including a more mechanistic model in terms of
postpartum physiology, breastfeeding behavior, or human milk composition changes (e.g.,
pH and lipids) in functions of the postpartum period. Such a dynamic model is currently
also available within the simcyp platform. Presently, a relatively ‘basic’ generic PBPK
framework was developed, and the focus was on three-months postpartum. However,
the same approach can easily be applied to other postpartum periods, although it is not
recommended to extend this model to a very early postpartum stage (e.g., immature blood–
milk barrier and differences between colostrum and mature milk). In this context, it has
been suggested that infants of 2–3 weeks of age are likely at the highest risk in terms of
medicine exposure. Indeed, while milk-volume intake is reaching high levels [68], the
maturation of elimination pathways in general displays slower ontogeny [69].

Additional refinement of the present PBPK models will be based on permeability
coefficients generated in an in vitro model for the blood–milk barrier. This will improve
predictions for medicines with transport routes (e.g., active transport) or physicochemical
properties that are not fully captured by the semi-mechanistic model from Koshimichi et al.
(2011) [17] (e.g., the model is quite sensitive to the input value for LogP and LogD). These
data are currently being generated with a newly developed in vitro model based on human
mammary epithelial cells [4]. Furthermore, in vivo data are generated in the Göttingen
minipig, which are expected to reveal additional mechanistic insights.

Finally, parameter estimation in the lactation PBPK models is likely to further improve
the simulations of the lactation PBPK models. However, this requires availability of (high-
quality) clinical data for training and verification, often not (yet) available. Information
regarding the dosing regimen, postpartum period and time of sampling is often incomplete
in the literature. Moreover, only a single study was found for some medicines (e.g.,
amoxicillin and cetirizine).

The workflow developed here can be applied to predict the human milk concentrations
of any small molecule medicine. A potential criticism of this PBPK-based method is the
complexity of the underlying models, especially when clinical data are available. In
our view, this criticism is currently unjustified, unless rich datasets provide maternal
systemic exposure, average concentrations in milk, and infant systemic exposure. A
retrospective analysis of the medicines included in the LactMed database showed that 51%
of the medicines had no information about their use during lactation [3]. Only 2% of the
medicines had data in all categories, supporting the use during lactation. In addition, the
quality of the available data is often low, due to inconsistencies between trials. Indeed,
most datasets in the ‘lactating’ population would not even allow identification of simple
compartmental models. Instead, borrowing strength (prior knowledge) from physiology
and pharmacology allows researchers to make dose-exposure predictions, even without
the availability of any clinical data.

5. Conclusions

The lactation PBPK models resulted in reasonable predictions of maternal plasma and
human milk concentration-time profiles for eight medicines, while overprediction (2- to
16-fold) of the concentration-time profiles in human milk was observed for nevirapine and
tenofovir. From a safety perspective, it is important that none of the models resulted in an
underprediction of the milk levels for the given maternal dosing regimen. The workflow
for the PBPK model development and evaluation can be used to simulate the human milk
concentration, and to calculate predicted infant doses for virtually any medicine. The
framework established here represents an important step towards an evidence-based safety
assessment of maternal medication for breastfed infants. A particular strength of this
approach is that unique quantitative information on infant exposure to maternal medicine
can be generated in an early (drug-development) stage, i.e., before clinical data becomes
available.
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