169 research outputs found

    Differential Cross Sections for Higgs Production

    Full text link
    We review recent theoretical progress in evaluating higher order QCD corrections to Higgs boson differential distributions at hadron-hadron colliders

    Stochastic evolution equations driven by Liouville fractional Brownian motion

    Get PDF
    Let H be a Hilbert space and E a Banach space. We set up a theory of stochastic integration of L(H,E)-valued functions with respect to H-cylindrical Liouville fractional Brownian motions (fBm) with arbitrary Hurst parameter in the interval (0,1). For Hurst parameters in (0,1/2) we show that a function F:(0,T)\to L(H,E) is stochastically integrable with respect to an H-cylindrical Liouville fBm if and only if it is stochastically integrable with respect to an H-cylindrical fBm with the same Hurst parameter. As an application we show that second-order parabolic SPDEs on bounded domains in \mathbb{R}^d, driven by space-time noise which is white in space and Liouville fractional in time with Hurst parameter in (d/4,1) admit mild solution which are H\"older continuous both and space.Comment: To appear in Czech. Math.

    Parton distribution functions from the precise NNLO QCD fit

    Full text link
    We report the parton distribution functions (PDFs) determined from the NNLO QCD analysis of the world inclusive DIS data with account of the precise NNLO QCD corrections to the evolution equations kernel. The value of strong coupling constant \alpha_s^{NNLO}(M_Z)=0.1141(14), in fair agreement with one obtained using the earlier approximate NNLO kernel by van Neerven-Vogt. The intermediate bosons rates calculated in the NNLO using obtained PDFs are in agreement to the latest Run II results.Comment: 8 pages, LATEX, 2 figures (EPS

    Canonical Quantisation in n.A=0 gauges

    Full text link
    We give a unified derivation of the propagator in the gauges n.A=0n.A=0 for n2n^2 timelike, spacelike or lightlike. We discuss the physical states and other physical questions.Comment: 7 pages, DAMTP 93-33, ITP-SB-93-3

    Isospin Dependence of Power Corrections in Deep Inelastic Scattering

    Full text link
    We present results of a perturbative QCD analysis of deep inelastic measurements of both the deuteron and proton structure functions. We evaluate the theoretical uncertainty associated to nuclear effects in the deuteron, and we extract simultaneously the isospin depedendence of: i)the higher twists terms; ii) the ratio of the longitudinal to transverse cross sections; iii) the ratio of the neutron to proton structure functions. The extraction of the latter, in particular, has been at the center of an intense debate. Its accurate determination is crucial both theoretically and for the interpretation of the more precise neutrino experiments including the newly planned high intensity 50 GeV proton synchrotron.Comment: 33 pages, 16 figure

    Next-to-Next-to-Leading Order Higgs Production at Hadron Colliders

    Get PDF
    The Higgs boson production cross section at pp and p\bar{p} colliders is calculated in QCD at next-to-next-to-leading order (NNLO). We find that the perturbative expansion of the production cross section is well behaved and that scale dependence is reduced relative to the NLO result. These findings give us confidence in the reliability of the prediction. We also report an error in the NNLO correction to Drell-Yan production.Comment: 5 pages, 4 figures, minor change

    QCD and Yukawa corrections to single-top-quark production via q qbar -> t bbar

    Full text link
    We calculate the O(alpha_s) and O(alpha_W m_t^2/M_W^2) corrections to the production of a single top quark via the weak process q qbar -> t bbar at the Fermilab Tevatron and the CERN Large Hadron Collider. An accurate calculation of the cross section is necessary in order to extract |V_tb| from experiment.Comment: LaTeX, 13 pages, replaced with version to appear in Phys. Rev.

    High-precision QCD at hadron colliders: electroweak gauge boson rapidity distributions at NNLO

    Full text link
    We compute the rapidity distributions of W and Z bosons produced at the Tevatron and the LHC through next-to-next-to leading order in QCD. Our results demonstrate remarkable stability with respect to variations of the factorization and renormalization scales for all values of rapidity accessible in current and future experiments. These processes are therefore ``gold-plated'': current theoretical knowledge yields QCD predictions accurate to better than one percent. These results strengthen the proposal to use W and Z production to determine parton-parton luminosities and constrain parton distribution functions at the LHC. For example, LHC data should easily be able to distinguish the central parton distribution fit obtained by MRST from that obtained by Alekhin.Comment: 47 pages, 17 figures. Minor typos, 1 reference correcte

    Electroweak radiative corrections to W-boson production at hadron colliders

    Get PDF
    The complete set of electroweak O(alpha) corrections to the Drell--Yan-like production of W bosons is calculated and compared to an approximation provided by the leading term of an expansion about the W-resonance pole. All relevant formulae are listed explicitly, and particular attention is paid to issues of gauge invariance and the instability of the W bosons. A detailed discussion of numerical results underlines the phenomenological importance of the electroweak corrections to W-boson production at the Tevatron and at the LHC. While the pole expansion yields a good description of resonance observables, it is not sufficient for the high-energy tail of transverse-momentum distributions, relevant for new-physics searches.Comment: 29 pages, latex, 17 postscript files, revised version that is to appear in Phys.Rev.D, some explanations added and results extended by a discussion of the QED factorization scale dependenc

    Infinities within graviton scattering amplitudes

    Full text link
    We present unitarity as a method for determining the infinities present in graviton scattering amplitudes. The infinities are a combination of IR and UV. By understanding the soft singularities we may extract the UV infinities and relate these to counter-terms in the effective action. As an demonstration of this method we rederive the UV infinities present at one-loop when gravity is coupled to matter.Comment: revised versio
    • 

    corecore