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The Higgs boson production cross section at pp and pp̄ colliders is calculated in QCD at next-
to-next-to-leading order (NNLO). We find that the perturbative expansion of the production cross
section is well behaved and that scale dependence is reduced relative to the NLO result. These
findings give us confidence in the reliability of the prediction. We also report an error in the NNLO
correction to Drell-Yan production.
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INTRODUCTION

Gluon fusion will be the most important production
channel for Higgs discovery at the LHC. The Higgs boson
should manifest itself in the reaction pp → H(→ γγ)+X ,
where a signal should emerge on top of a very smooth,
measurable γγ background. At the Tevatron, the focus
for Higgs discovery is in associated production modes like
W/Z +H and tt̄+H . In a mass window around the WW
threshold, however, gluon fusion is important.

NNLO corrections to the process gg → H have been
evaluated recently in the heavy top limit and the ap-
proximation of soft gluon radiation [1, 2, 3], where the
partonic center-of-mass energy is close to the Higgs mass,
M2

H/ŝ ≡ x → 1. If we write the partonic cross section as
an expansion in (1 − x), it has the following form:

σ̂ij =
∑

n≥0

(αs

π

)n

σ̂
(n)
ij ,

σ̂
(n)
ij = a(n) δ(1 − x) +

2n−1
∑

k=0

b
(n)
k

[

lnk(1 − x)

1 − x

]

+

+

∞
∑

l=0

2n−1
∑

k=0

c
(n)
lk (1 − x)l lnk(1 − x) ,

(1)

where the [ ]+ terms are “+”-distributions defined in the
usual way (see, e.g.Ref. [2]). Refs. [1, 2, 3] contain the

coefficients a(n) and b
(n)
k up to n = 2 of this expansion.

However, as anticipated in Ref. [4], these contributions
are not sufficient to arrive at a reliable prediction for
the total cross section. Using resummation techniques,

the authors of Ref. [4] evaluated the coefficient c
(2)
03 at

NNLO. It was included in the final results of Refs. [2, 3].

However, the unknown sub-leading terms c
(2)
0i with i ≤ 2,

were treated in different ways by Refs. [2] and [3], leading
to significant deviations in the numerical results. It is the
purpose of the current letter to report on the analytical

evaluation of the coefficients c
(2)
lk with k = 0, . . . , 3 and

l ≥ 0. In other words, we compute the partonic cross
section for Higgs production in terms of an expansion
around the soft limit. We find that the series converges
very well and conclude that our final results are equiva-
lent to a calculation of the cross section in closed analytic
form. We therefore resolve the ambiguities of Refs. [2, 3]
and provide a realistic prediction for the Higgs produc-
tion cross section in pp and pp̄ collisions.

In checking our methods, we found an error in the
NNLO Drell-Yan calculation of Ref. [5]. The correct re-
sult is given at the end of the next section.

THE CALCULATION

In the following we will assume all quark masses to
vanish, except for the top quark mass, and neglect all
electro-weak couplings. In this limit, the Higgs boson
can couple to gluons only via a top quark loop. This
coupling can be approximated by an effective Lagrangian
corresponding to the limit mt → ∞, which is valid for a
large range of MH , including the currently favored region
between 100 and 200 GeV. The effective Lagrangian is

Leff = −H

4v
C1(αs)Ga

µνGa µν , (2)

where Ga
µν is the gluon field strength tensor, H is the

Higgs field, v ≈ 246GeV is the vacuum expectation value
of the Higgs field and C1(αs) is the Wilson coefficient.
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Renormalization of this Lagrangian has been discussed
in Ref. [2], for example, and shall not be repeated here.
In the MS scheme, the coefficient function C1(αs) reads,
up to the order required here [6, 4]:

C1(αs) = −1

3

αs

π

{

1 +
11

4

αs

π
+

(αs

π

)2
[

2777

288

+
19

16
lµt + nf

(

−67

96
+

1

3
lµt

) ]

+ . . .

}

,

(3)

where lµt = ln(µ2
R/M2

t ). µR is the renormalization scale

and Mt is the on-shell top quark mass. αs ≡ α
(5)
s (µ2

R)
is the MS renormalized QCD coupling constant for five
active flavors, and nf is the number of massless flavors.
In our numerical results, we always set nf = 5.

The Feynman diagrams to be evaluated for hadronic
collisions at NNLO are: (i) two-loop virtual diagrams for
gg → H ; (ii) one-loop single real emission diagrams for
gg → Hg, gq → Hq, and qq̄ → Hg; (iii) tree-level dou-
ble real emission diagrams for gg → Hgg, gg → Hqq̄,
gq → Hgq, qq → Hqq, qq̄ → Hgg, and qq̄ → Hqq̄. The

coefficients a(2) and b
(2)
k in Eq. (1) are determined by the

gg sub-process only, while the c
(2)
lk receive contributions

from all sub-processes.
For the single real emission diagrams (ii), the full an-

alytical result for general values of x has been evaluated
and will be published elsewhere. It can be expanded triv-
ially in terms of (1−x). In order to obtain this expansion
for the double real emission contribution (iii), we evalu-
ated the squared amplitude and expressed the invariants
of incoming and outgoing momenta, as well as the phase
space measure in terms of two scattering angles and the
dimensionless variables x, y, z, defined by [7]

M2
H = ŝ x , p1 · pH =

ŝ

2
(1 − (1 − x)y) ,

p2 · pH =
ŝ

2

(

x + (1 − x)2y(1 − y)(1 − z)

1 − (1 − x)y

)

.

(4)

p1, p2, and pH are the momenta of the incoming partons
and the (outgoing) Higgs boson, respectively. Modulo
powers that vanish as d → 4 (d is the space-time dimen-
sion), the resulting expression is expanded as a Laurent
series in (1−x). The leading terms in this expansion are
of order (1− x)−1 and give rise to the purely soft contri-
bution obtained in Refs. [2, 3]. Here we also keep higher
orders in this expansion, (1 − x)l, l ≥ 0. Aside from
a few extra algebraic manipulations of hypergeometric
functions, this expansion procedure allows us to perform
the phase space integration along the lines of Ref. [7].
Details of the calculations will be presented elsewhere.

There are a number of checks that can be performed on
our result. One is to see that all poles in d−4 cancel. We
have explicitly verified this cancellation through order
(1 − x)16. Since we have computed single real emission
and the mass factorization counterterms in closed form

(as opposed to an expansion in (1 − x)), we can also
obtain the pole terms for double real emission in closed
form by demanding that the poles cancel. This allows
us to obtain in closed form all finite terms in the cross
section that are linked to the poles. These include all
terms proportional to lnn(1 − x) (n = 1, 2, 3) and all
explicitly scale-dependent terms.

As another check on our approach we applied it to the
cross section for the Drell-Yan process at NNLO, where
the full x-dependence is known in analytical form [5].
Detailed comparison with unpublished intermediate re-
sults [15] shows that our expansion of the tree-level dou-
ble real emission terms is in complete agreement with
the corresponding expansion of the exact calculation.
However, we find differences in the one-loop single real
emission terms which we also have computed exactly. We
conclude that the NNLO result for the Drell-Yan process
in Ref. [5] is incorrect and that the correct result is

∆
(2),CA

qq̄ = ∆
(2),CA

qq̄

∣

∣

∣

Ref. [5]
+

(αs

4π

)2

CACF

{

− 8x
(

2Li2(1 − x) + 2 ln(x) ln(1 − x) − ln2(x)
)

}

,

∆
(2),CF

qq̄ = ∆
(2),CF

qq̄

∣

∣

∣

Ref. [5]
+

(αs

4π

)2

C2
F

{

−16 ln(x)

− 8(3 + x)
(

2Li2(1 − x) + 2 ln(x) ln(1 − x) − ln2(x)
)

}

,

∆(2),CA

qg = ∆(2),CA

qg

∣

∣

∣

Ref. [5]
+

(αs

4π

)2

CATf

{

−8x ln(x)

+ 4x
(

2Li2(1 − x) + 2 ln(x) ln(1 − x) − ln2(x)
)

}

,

∆(2),CF

qg = ∆(2),CF

qg

∣

∣

∣

Ref. [5]
+

(αs

4π

)2

CF Tf

{

− 4(3 − x)
(

2Li2(1 − x) + 2 ln(x) ln(1 − x) − ln2(x)
)

+ 12(1 − x)(1 − 2 ln(1 − x)) + (28 − 44x) ln(x)
}

.

(5)

The numerical effect of these corrections is rather small
and shall be investigated in more detail elsewhere.

PARTONIC RESULTS

We now present the result for the partonic Higgs pro-
duction cross sections at NNLO. We define

σ0 =
π

576v2

(αs

π

)2

, L(x) = ln(1 − x) ,

σ̂ij = σ̂
(0)
ij +

αs

π
σ̂

(1)
ij +

(αs

π

)2

σ̂
(2)
ij + . . . .

(6)

The lower order terms, σ̂
(0)
ij and σ̂

(1)
ij , are given in

Refs. [8, 9]. If we split the second order terms into “soft”
and “hard” pieces,

σ̂
(2)
ij = δigδjg σ̂(2),soft

gg + σ̂
(2),h
ij , (7)
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the soft pieces are given in Eq. (25) of Ref. [2], while the

hard pieces, σ̂
(n),h
ij (to order (1 − x)1) are:

σ̂(2),h
gg = σ0

{

1453

12
− 147 ζ2 − 351 ζ3 + nf

(

− 77

18
+ 4 ζ2

)

+ L(x)

[

− 1193

4
+ 180 ζ2 +

101

12
nf

]

+ L2(x)

(

411

2
− 4 nf

)

− 144 L3(x)

+ (1 − x)

[

− 3437

4
+ L(x)

(

2379

2
− 270 ζ2

)

− 2385

4
L2(x) + 216 L3(x) +

1017

2
ζ2 +

1053

2
ζ3

+ nf

(

395

24
− 45

2
L(x) +

22

3
L2(x) − 22

3
ζ2

)]

+ . . .

}

,

(8)

σ̂(2),h
gq = σ0

{

11

27
+

29

6
ζ2 +

311

18
ζ3 +

13

81
nf

+ L(x)

[

341

18
− 50

9
ζ2 −

2

3
nf

]

+ L2(x)

(

85

36
+

1

18
nf

)

+
367

54
L3(x)

+ (1 − x)

[

− 959

18
+

433

9
L(x) − 33

2
L2(x)

+ 8 ζ2 +
4

9
nf L(x)

]

+ . . .

}

,

(9)

and

σ̂
(2),h
qq̄,NS = σ̂

(2),h
qq̄,S = σ̂

(2),h
qq,NS = σ̂

(2),h
qq,S =

σ0

{

(1 − x)

[

20

9
− 16

9
L(x) +

16

9
L2(x) − 16

9
ζ2

]

+ . . .

}

.

(10)

For the sake of brevity, we have suppressed explicitly
scale dependent terms by setting µF = µR = MH (they
can be readily reconstructed using scale invariance) and
displayed terms only to order (1 − x)1. Terms to order
(1−x)1 dominate the corrections (see Fig. (2)), but we in-
clude terms to order (1−x)16 for all sub-processes in our
numerical analysis. The labels “NS” and “S” in Eq. (10)
denote the flavor non-singlet and singlet quark contribu-
tions, respectively. The four contributions are equal only
to order (1− x)1; their expansions differ at higher orders

of (1 − x) (except that σ̂
(2),h
qq̄,S = σ̂

(2),h
qq,S exactly). We note

in passing that our explicit calculation confirms the value

for the coefficient c
(2)
03 for the gluon-gluon subprocess de-

rived in Ref. [4].

HADRONIC RESULTS

The hadronic cross section σ is related to the partonic
cross section through a convolution with the parton dis-

tribution functions. It has been argued [10] that conver-
gence is improved by pulling out a factor of x from σ̂ij

before expanding in (1 − x). We indeed observe a more
stable behavior at low orders of (1 − x) and will adopt
this prescription in what follows. Beyond fifth order,
however, it is irrelevant which is used.

In Fig. (1), we show the cross section at LO, NLO and
NNLO. At each order, we use the corresponding MRST

parton distribution set [16] [11, 12]. The NNLO distri-
butions are based upon approximations of the three-loop
splitting functions [13]. Studies using other parton distri-
butions, including the NNLO distributions of Alekhin [14]
will be presented elsewhere.

1

10

102

100 120 140 160 180 200 220 240 260 280 300

σ(pp → H+X) [pb]

MH [GeV]

LO
NLO
NNLO

√ s = 14 TeV

FIG. 1: LO (dotted), NLO (dashed) and NNLO (solid) cross
sections for Higgs production at the LHC (µF = µR = MH).
In each case, we weight the cross section by the ratio of the
LO cross section in the full theory (Mt = 175 GeV) to the LO
cross section in the effective theory (Eq. (2)).

We next look at the quality of the expansion that we
use for the evaluation of the NNLO corrections. Fig. (2)
shows the NNLO K-factor (KNNLO ≡ σNNLO/σLO) for
the LHC starting from the purely soft limit ∝ (1 − x)−1

and adding successively higher orders in the expansion in
(1− x) up to order (1− x)16. Clearly, the convergence is
very good: beyond order (1−x)1, the curves differ by less
than 1%. Observe that the purely soft contribution un-
derestimates the true result by about 10-15%, while the
next term in the expansion, ∝ (1 − x)0, overestimates it
by about 5%. Note that the approximation up to (1−x)0

is not the same as the “soft+sl”-result of Ref. [2] or
the “SVC”-result of Ref. [3], since these include only the
ln3(1 − x) terms at that order.

We next consider the renormalization scale (µR) and
factorization scale (µF ) dependence of the K-factors. At
the LHC, we observe that the µF and µR dependence has
the opposite sign. In order to arrive at a conservative
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1.6
1.7
1.8
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2.1
2.2
2.3
2.4
2.5

100 120 140 160 180 200 220 240 260 280 300

KNNLO(pp→H+X)

MH [GeV]

soft
(1-x)0

(1-x)n, n=1,3,6,9

(1-x)15

(1-x)16

√ s = 14 TeV

FIG. 2: K-factor for Higgs production at the LHC. Each line
corresponds to a different order in the expansion in (1 − x).
The renormalization and factorization scales are set to MH .

estimate of the scale dependence, we display two curves
corresponding to the values (µR, µF ) = (2MH , MH/2)
and (MH/2, 2MH) (see Fig. (3)). The scale dependence

0

0.5

1

1.5

2

2.5

3

100 120 140 160 180 200 220 240 260 280 300

K(pp→H+X)

MH [GeV]

LO
NLO

NNLO

√ s = 14 TeV

FIG. 3: Scale dependence at the LHC. The lower curve of
each pair corresponds to µR = 2MH , µF = MH/2, the upper
to µR = MH/2, µF = 2MH . The K-factor is computed with
respect to the LO cross section at µR = µF = MH .

is reduced when going from NLO to NNLO and, in con-
trast to the results in Ref. [2], the perturbative series up
to NNLO appears to be well behaved. The reason is that
both the newly calculated contributions from hard ra-
diation and the effect of the previously unavailable set
of NNLO parton distribution functions reduce the NNLO

cross section. Detailed studies of the individual effects

will be presented in a forthcoming paper.

Fig. 4 shows the results for the Tevatron at a center-of-
mass energy of

√
s = 2 TeV. Here the dependence on µR

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

100 120 140 160 180 200 220 240 260 280 300

K(pp
_
 →H+X)

MH [GeV]

LO
NLO
NNLO

√ s = 2 TeV

FIG. 4: Scale dependence for Tevatron Run II. The lower
curve of each pair corresponds to µR = µF = 2MH , the upper
to µR = µF = MH/2.

and µF has the same sign, so we set µR = µF ≡ µ and
vary µ between MH/2 and 2MH . The K-factor is larger
than for the LHC, but the perturbative convergence and
the scale dependence are satisfactory.

CONCLUSIONS

We have computed the NNLO corrections to inclusive
Higgs production at hadron colliders. We find reasonable
perturbative convergence and reduced scale dependence.
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