20 research outputs found

    Understanding the effect of carbon status on stem diameter variations

    No full text
    Background Carbon assimilation and leaf-to-fruit sugar transport are, along with plant water status, the driving mechanisms for fruit growth. An integrated comprehension of the plant water and carbon relationships is therefore essential to better understand water and dry matter accumulation. Variations in stem diameter result from an integrated response to plant water and carbon status and are as such a valuable source of information. Methods A mechanistic water flow and storage model was used to relate variations in stem diameter to phloem sugar loading and sugar concentration dynamics in tomato. The simulation results were compared with an independent model, simulating phloem sucrose loading at the leaf level based on photosynthesis and sugar metabolism kinetics and enabled a mechanistic interpretation of the ‘one common assimilate pool’ concept for tomato. Key Results Combining stem diameter variation measurements and mechanistic modelling allowed us to distinguish instantaneous dynamics in the plant water relations and gradual variations in plant carbon status. Additionally, the model combined with stem diameter measurements enabled prediction of dynamic variables which are difficult to measure in a continuous and non-destructive way, such as xylem water potential and phloem hydrostatic potential. Finally, dynamics in phloem sugar loading and sugar concentration were distilled from stem diameter variations. Conclusions Stem diameter variations, when used in mechanistic models, have great potential to continuously monitor and interpret plant water and carbon relations under natural growing condition

    Understanding the effect of carbon status on stem diameter variations

    No full text
    Background Carbon assimilation and leaf-to-fruit sugar transport are, along with plant water status, the driving mechanisms for fruit growth. An integrated comprehension of the plant water and carbon relationships is therefore essential to better understand water and dry matter accumulation. Variations in stem diameter result from an integrated response to plant water and carbon status and are as such a valuable source of information. Methods A mechanistic water flow and storage model was used to relate variations in stem diameter to phloem sugar loading and sugar concentration dynamics in tomato. The simulation results were compared with an independent model, simulating phloem sucrose loading at the leaf level based on photosynthesis and sugar metabolism kinetics and enabled a mechanistic interpretation of the ‘one common assimilate pool’ concept for tomato. Key Results Combining stem diameter variation measurements and mechanistic modelling allowed us to distinguish instantaneous dynamics in the plant water relations and gradual variations in plant carbon status. Additionally, the model combined with stem diameter measurements enabled prediction of dynamic variables which are difficult to measure in a continuous and non-destructive way, such as xylem water potential and phloem hydrostatic potential. Finally, dynamics in phloem sugar loading and sugar concentration were distilled from stem diameter variations. Conclusions Stem diameter variations, when used in mechanistic models, have great potential to continuously monitor and interpret plant water and carbon relations under natural growing condition

    Comprehensive metabolomics reveals correlation between sophorolipid biosynthesis and autophagy

    No full text
    Sophorolipids are biobased and biodegradable glycolipid surface-active agents contributing to the shift from petroleum to biobased surfactants, associated with clear environmental benefits. However, their production cost is currently too high to allow commercialisation. Therefore, a continuous sophorolipid production process was evaluated, i.e., a retentostat with an external filtration unit. Despite an initial increase in volumetric productivity, productivity eventually declined to almost 0 g L-1 h-1. Following comprehensive metabolomics on supernatant obtained from a standardised retentostat, we hypothesised exhaustion of the N-starvation-induced autophagy as the main mechanism responsible for the decline in bolaform sophorolipid productivity. Thirty-six metabolites that correlate with RNA/protein autophagy and high sophorolipid productivity were putatively identified. In conclusion, our results unveil a plausible cause of this bola sophorolipid productivity decline in an industrially relevant bioreactor set-up, which may thus impact majorly on future yeast biosurfactant regulation studies and the finetuning of bola sophorolipid production processes
    corecore