23 research outputs found

    From quantum fusiliers to high-performance networks

    Full text link
    Our objective was to design a quantum repeater capable of achieving one million entangled pairs per second over a distance of 1000km. We failed, but not by much. In this letter we will describe the series of developments that permitted us to approach our goal. We will describe a mechanism that permits the creation of entanglement between two qubits, connected by fibre, with probability arbitrarily close to one and in constant time. This mechanism may be extended to ensure that the entanglement has high fidelity without compromising these properties. Finally, we describe how this may be used to construct a quantum repeater that is capable of creating a linear quantum network connecting two distant qubits with high fidelity. The creation rate is shown to be a function of the maximum distance between two adjacent quantum repeaters.Comment: 2 figures, Comments welcom

    Towards Quantum Repeaters with Solid-State Qubits: Spin-Photon Entanglement Generation using Self-Assembled Quantum Dots

    Full text link
    In this chapter we review the use of spins in optically-active InAs quantum dots as the key physical building block for constructing a quantum repeater, with a particular focus on recent results demonstrating entanglement between a quantum memory (electron spin qubit) and a flying qubit (polarization- or frequency-encoded photonic qubit). This is a first step towards demonstrating entanglement between distant quantum memories (realized with quantum dots), which in turn is a milestone in the roadmap for building a functional quantum repeater. We also place this experimental work in context by providing an overview of quantum repeaters, their potential uses, and the challenges in implementing them.Comment: 51 pages. Expanded version of a chapter to appear in "Engineering the Atom-Photon Interaction" (Springer-Verlag, 2015; eds. A. Predojevic and M. W. Mitchell

    Parent of origin influences the cardiac expression of vascular endothelial growth factor (Vegfa)

    No full text
    BACKGROUND: Vascular endothelial growth factor A (VEGFA) is a major regulator of both physiological and pathological angiogenesis. Associations between polymorphisms in VEGFA and complex disease have been inconsistent. The parent from whom the allele was inherited may account for these inconsistencies. This study examined the parent of origin effect on the expression of murine Vegfa. METHODS: Two homozygous, inbred mouse strains A/J (AJ) and 129x1/SvJ (129) were crossed to produce reciprocal AJ129 and 129AJ offspring, respectively. RNA was extracted from cardiac tissue of 6 week old male (n = 8) and female (n = 8) parental, and male and female F1 offspring mice (AJ129 n = 8 and 129AJ n = 8). Vegfa and Hif1a expression levels were measured by qPCR and compared between the F1 offspring from the reciprocal crosses. RESULTS: We found significant differences in the expression of Vegfa in F1 offspring (AJ129 and 129AJ mice) of the reciprocal crosses between AJ and 129 mice. Offspring of male AJ mice had significantly higher expression of Vegfa than offspring of male 129 mice (p = 0.006). This difference in expression was not the result of preferential allele expression (allelic imbalance). Expression of Hif1a, a transcriptional regulator of Vegfa expression, was also higher in F1 offspring of an AJ father (p = 0.004). CONCLUSION: Differences in Vegfa and Hif1a gene expression are likely the result of an upstream angiogenic regulator gene that is influenced by the parent of origin. These results highlight the importance of including inheritance information, such as parent of origin, when undertaking allelic association studies
    corecore