23 research outputs found

    Vegetation detection through smoke-filled AVIRIS images: An assessment using MODIS band passes

    Full text link
    Radiometrically calibrated, Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) images acquired during the Smoke, Clouds and Radiation in Brazil (SCAR-B) experiment were processed to simulate vegetation index (VI) imagery with the Moderate Resolution Imaging Spectroradiometer (MODIS) band passes. Data sets were extracted from tropical forested areas, burned fields, and shrub/grassland areas over both clear and variable smoke conditions with average aerosol optical thickness (AOT) values at 0.67 Jim of 0.14, 1.1, and 1.9, respectively. The atmospheric resistant VIs and various middle-infrared (MIR) derived VIs were then analyzed with respect to their ability to minimize atmospheric "smoke" contamination. The atmospheric resistant VIs utilized the blue band for correction of the red band, while the MIR-derived VIs used the MIR region (1.3 - 2.5 μm) as a substitute for the red band since it is relatively transparent to smoke, yet remains sensitive to green vegetation. The performance of these indices were assessed and compared with the normalized difference vegetation index (NDVI) and the soil-adjusted vegetation index (SAVI). Over the tropical forests the NDVI and SAVI had high relative errors over all smoke-filled atmospheric conditions (50-80% error), while the atmospheric resistant VIs resulted in a 50-80% relative error only over thick levels of smoke. Over optically thin levels (AOT at 0.67 μm 40%), while all other indices had errors below 20%. In the shrub/grassland site, the atmospheric resistant indices behaved similarly with the MIR-derived indices, with both less sensitive to smoke than the NDVI and SAVI. We conclude that the MIR indices, particularly with MODIS band 7 (2.13 μm), are useful in vegetation monitoring over forested areas during the burning season. However, they did not perform well in areas outside of forests such as burned areas and shrub/grassland. Copyright 1998 by the American Geophysical Union

    Effects of standing litter on the biophysical interpretation of plant canopies with spectral indices

    Full text link
    Litter is frequently present within vegetation canopies and thus contributes to the overall spectral response of a canopy. Consequently, litter will affect spectral indices designed to be sensitive to green vegetation, soil brightness or other features. The main objectives of the current research were to 1) evaluate the spectral properties of green vegetation and litter and 2) quantify the effect of standing litter on the performance of spectral indices. The SAIL (scattering by arbitrarily inclined leaves) model was used to generate canopy reflectance "mixtures" and to estimate fractions of absorbed photosynthetically active radiation (fAPAR) with varying leaf area index (LAI), soil background, combinations of vegetation component spectral properties, and one or two horizontal vegetation layers. Spectral measurements of different bare soils and mature green and senescent leaves of representative plant species at the HAPEX-Sahel (Hydrological Atmospheric Pilot Experiment) study sites were used as input. The normalized difference vegetation index (NDVI), the soil adjusted vegetation index (SAVI), and the modified NDVI (MNDVI) and mixture model spectral indices were selected to evaluate their performance with respect to standing litter and green vegetation mixtures. Spectral reflectance signatures of leaf litter varied significantly, but strongly resembled soil spectral characteristics. The biophysical parameters (LAI, fAPAR), derived from spectral vegetation indices, tended to be overestimated for randomly distributed, sparse green and litter vegetation cover mixtures, and underestimated for randomly distributed dense green and litter vegetation cover mixtures. All spectral indices and their biophysical interpretation were significantly altered by variability in 1) green leaf, leaf litter, and bark optical properties, 2) the amount and position of standing leaf litter, 3) leaf angle distribution, and 4) soil background. The NDVI response to these variables was inconsistent, and was the most affected by litter. The spectral mixture model indices, designed to be sensitive to litter, were shown to be promising for the identification of litter present among different ecosystems

    MODIS vegetation index compositing approach: A prototype with AVHRR data

    Full text link
    In this study, the 16-day MODIS (MODerate resolution Imaging Spectroradiometer) vegetation index (VI) compositing algorithm and product were described, evaluated, and compared with the current AVHRR (Advanced Very High Resolution Spectroradiometer) maximum value composite (MVC) approach. The MVC method selects the highest NDVI (normalized difference vegetation index) over a certain time interval. The MODIS VI compositing algorithm emphasizes a global and operational view angle standardization approach: a reflectance-based BRDF (Bidirectional Reflectance Distribution Function) model, succeeded by a back-up MVC algorithm that includes a view angle constraint. A year's worth of daily global AVHRR data was used to prototype the MODIS vegetation index compositing algorithm. The composite scenarios were evaluated with respect to: 1) temporal evolution of the VI for different continents and vegetation types, 2) spatial continuity of the VI, 3) quality flags related to data integrity, cloud cover, and composite method, and 4) view angle distribution of the composited data. On a continental scale, the composited NDVI values from the MODIS algorithm were as much as 30% lower than the mostly, off-nadir NDVI results based on the MVC criterion. The temporal evolution of the NDVI values derived with the MODIS algorithm were similar to the NDVI values derived from the MVC algorithm. A simple BRDF model was adequate to produce nadir equivalent reflectance values from which the NDVI could be computed. Application of the BRDF and 'back-up' components in the MODIS algorithm were dependent on geographic location and season, for example, the BRDF interpolation was most frequently applied in arid and semiarid regions, and during the dry season over humid climate vegetation types. Examples of a MODIS-like global NDVI map and associated quality flags were displayed using a pseudo color bit mapping scheme

    Radiative transfer in shrub savanna sites in Niger: preliminary results from HAPEX-Sahel. 3. Optical dynamics and vegetation index sensitivity to biomass and plant cover

    Get PDF
    A shrub savannah landscape in Niger was optically characterized utilizing blue, green, red and near-infrared wavelengths. Selected vegetation indices were evaluated for their performance and sensitivity to describe the complex Sahelian soil/vegetation canopies. Bidirectional reflectance factors (BRF) of plants and soils were measured at several view angles, and used as input to various vegetation indices. Both soil and vegetation targets had strong anisotropic reflectance properties, rendering all vegetation index (VI) responses to be a direct function of sun and view geometry. Soil background influences were shown to alter the response of most vegetation indices. N-space greenness had the smallest dynamic range in VI response, but the n-space brightness index provided additional useful information. The global environmental monitoring index (GEMI) showed a large VI dynamic range for bare soils, which was undesirable for a vegetation index. The view angle response of the normalized difference vegetation index (NDVI), atmosphere resistant vegetation index (ARVI) and soil atmosphere resistant vegetation index (SARVI) were asymmetric about nadir for multiple view angles, and were, except for the SARVI, altered seriously by soil moisture and/or soil brightness effects. The soil adjusted vegetation index (SAVI) was least affected by surface soil moisture and was symmetric about nadir for grass vegetation covers. Overall the SAVI, SARVI and the n-space vegetation index performed best under all adverse conditions and were recommended to monitor vegetation growth in the sparsely vegetated Sahelian zone. © 1994

    Normalization of multidirectional red and NIR reflectances with the SAVI

    Full text link
    Directional reflectance measurements were made over a semidesert gramma (Bouteloua spp.) grassland at various times of the growing season. Azimuthal strings of view angle measurements from + 40° to - 40° were made for various solar zenith angles and soil moisture conditions. The sensitivity of the normalized difference vegetation index (NDVI) and the soil-adjusted vegetation index (SAVI) to these bidirectional measurements was assessed for purposes of improving remote temporal monitoring of vegetation activity. The NDVI response from the grassland canopy was strongly anisotropic about nadir view angles while the SAVI response was symmetric about nadir. This occurred for all sun angles, soil moisture condition, and grass densities. This enabled variations in SAVI-view angle response to be minimized with a cosine function. It is expected that this study will aid in improving the characterization of vegetation temporal activity from Landsat TM, SPOT, AVHRR, and the Earth Observing System MODIS sensor. © 1992

    Radiative transfer in shrub savanna sites in Niger: preliminary results from HAPEX-Sahel. 1. Modelling surface reflectance using a geometric-optical approach

    Full text link
    To use optical remote sensing to monitor land surface-climate interactions over large areas, algorithms must be developed to relate multispectral measurements to key variables controlling the exchange of matter (water, carbon dioxide) and energy between the land surface and the atmosphere. The proportion of the ground covered by vegetation and the interception of photosynthetically active radiation (PAR) by vegetation are examples of two variables related to evapotranspiration and primary production, respectively. An areal-proportion model of the multispectral reflectance of shrub savanna, composed of scattered shrubs with a grass, forb or soil understory, predicted the reflectance of two 0.5 km2 sites as the area-weighted average of the shrub and understory or 'background' reflectances. Although the shaded crown and shaded background have darker reflectances, ignoring them in the area-weighted model is not serious when shrub cover is low and solar zenith angle is small. A submodel predicted the reflectance of the shrub crown as a function of the foliage reflectance and amount of plant material within the crown, and the background reflectance scattered or transmitted through canopy gaps (referred to as a soil-plant 'spectral interaction' term). One may be able to combine these two models to estimate both the fraction of vegetation cover and interception of PAR by green vegetation in a shrub savanna. © 1994

    Deconvolution of remotely sensed spectral mixtures for retrieval of LAI, fAPAR and soil brightness

    Full text link
    Linear mixture models have been used to invert spectral reflectances of targets at the Earth's surface into proportions of plant and soil components. However, operational use of mixture models has been limited by a lack of biophysical interpretation of the results. The main objectives of this study were (1) to relate the deconvolved components of mixture model with biophysical properties of vegetation and soil at the surface and (2) to apply the mixture model results to remotely sensed imagery. A radiative transfer model (SAIL: Scattering by Arbitrarily Inclined Leaves) was used to generate reflectance 'mixtures' from leaf and bare soil spectral measurements made at HAPEX-Sahel (Hydrological Atmospheric Pilot EXperiment) study sites. The SAIL model was used to create canopy reflectances and fractions of absorbed photosynthetically active radiation (fAPAR) for a range of mixed targets with varying leaf area index (LAI) and soils. A spectral mixture model was used to deconvolve the simulated reflectance data into component fractions, which were then calibrated to the SAIL-generated LAI, fAPAR and soil brightness. The calibrated relationships were validated with observational ground data (LAI, fAPAR and reflectance) measured at the HAPEX Sahel fallow bush/grassland, fallow grassland and millet sites. Both the vegetation and soil component fractions were found to be dependent upon soil background brightness, such that inclusion of the soil fraction information significantly improved the derivation of vegetation biophysical parameters. Soil brightness was also shown to be a useful parameter to infer soil properties. The deconvolution methodology was then applied to a nadir image of a HAPEX-Sahel site measured by the Advanced Solid State Array Spectroradiometer (ASAS). Site LAI and fAPAR were successfully estimated by combining the fractional estimates of vegetation and soils, obtained through deconvolution of the ASAS image, with the calibrated relationships between vegetation fraction, LAI and fAPAR, obtained from the SAIL data
    corecore