10 research outputs found

    Qatar experience on One Health approach for middle-east respiratory syndrome coronavirus, 2012-2017: A viewpoint

    Get PDF
    The emergence of the Middle East Respiratory Syndrome Corona Virus (MERS-CoV) in the Middle East in 2012 was associated with an overwhelming uncertainty about its epidemiological and clinical characteristics. Once dromedary camels (Camelus dromedarius) was found to be the natural reservoir of the virus, the public health systems across the Arabian Peninsula encountered an unprecedented pressure to control its transmission. This view point describes how the One Health approach was used in Qatar to manage the MERS-CoV outbreak during the period 2012–2017. One Health focuses on the association between the human, animals and environment sectors for total health and wellbeing of these three sectors. To manage the MERS outbreak in Qatar through a One Health approach, the Qatar National Outbreak Control Taskforce (OCT) was reactivated in November 2012. The animal health sector was invited to join the OCT. Later on, technical expertise was requested from the WHO, FAO, CDC, EMC, and PHE. Subsequently, a comprehensive One Health roadmap was delivered through leadership and coordination; surveillance and investigation; epidemiological studies and increase of local diagnostic capacity. The joint OCT, once trained had easy access to allocated resources and high risk areas to provide more evidence on the potential source of the virus and to investigate all reported cases within 24–48 h. Lack of sufficient technical guidance on veterinary surveillance and poor risk perception among the vulnerable population constituted major obstacles to maintain systematic One Health performance

    SARS-CoV-2 variants of interest and concern naming scheme conducive for global discourse

    Get PDF
    A group convened and led by the Virus Evolution Working Group of the World Health Organization reports on its deliberations and announces a naming scheme that will enable clear communication about SARS-CoV-2 variants of interest and concern.Molecular basis of virus replication, viral pathogenesis and antiviral strategie

    Reported direct and indirect contact with dromedary camels among laboratory-confirmed MERS-CoV cases .

    No full text
    Dromedary camels (Camelus dromedarius) are now known to be the vertebrate animal reservoir that intermittently transmits the Middle East respiratory syndrome coronavirus (MERS-CoV) to humans. Yet, details as to the specific mechanism(s) of zoonotic transmission from dromedaries to humans remain unclear. The aim of this study was to describe direct and indirect contact with dromedaries among all cases, and then separately for primary, non-primary, and unclassified cases of laboratory-confirmed MERS-CoV reported to the World Health Organization (WHO) between 1 January 2015 and 13 April 2018. We present any reported dromedary contact: direct, indirect, and type of indirect contact. Of all 1125 laboratory-confirmed MERS-CoV cases reported to WHO during the time period, there were 348 (30.9%) primary cases, 455 (40.4%) non-primary cases, and 322 (28.6%) unclassified cases. Among primary cases, 191 (54.9%) reported contact with dromedaries: 164 (47.1%) reported direct contact, 155 (44.5%) reported indirect contact. Five (1.1%) non-primary cases also reported contact with dromedaries. Overall, unpasteurized milk was the most frequent type of dromedary product consumed. Among cases for whom exposure was systematically collected and reported to WHO, contact with dromedaries or dromedary products has played an important role in zoonotic transmission

    Global mortality estimates for the 2009 influenza pandemic from the GLaMOR Project: a modeling study.

    No full text
    Background: Assessing the mortality impact of the 2009 influenza A H1N1 virus (H1N1pdm09) is essential for optimizing public health responses to future pandemics. The World Health Organization reported 18,631 laboratory-confirmed pandemic deaths, but the total pandemic mortality burden was substantially higher. We estimated the 2009 pandemic mortality burden through statistical modeling of mortality data from multiple countries. Methods and Findings: We obtained weekly virology and underlying cause-of-death mortality time series for 2005–2009 for 20 countries covering ,35% of the world population. We applied a multivariate linear regression model to estimate pandemic respiratory mortality in each collaborating country. We then used these results plus ten country indicators in a multiple imputation model to project the mortality burden in all world countries. Between 123,000 and 203,000 pandemic respiratory deaths were estimated globally for the last 9 mo of 2009. The majority (62%–85%) were attributed to persons under 65 y of age. We observed a striking regional heterogeneity, with almost 20-fold higher mortality in some countries in the Americas than in Europe. The model attributed 148,000–249,000 respiratory deaths to influenza in an average prepandemic season, with only 19% in persons ,65 y. Limitations include lack of representation of low-income countries among single-country estimates and an inability to study subsequent pandemic waves (2010–2012). Conclusions: We estimate that 2009 global pandemic respiratory mortality was ,10-fold higher than the World Health Organization’s laboratory-confirmed mortality count. Although the pandemic mortality estimate was similar in magnitude to that of seasonal influenza, a marked shift toward mortality among persons ,65 y of age occurred, so that many more life-years were lost. The burden varied greatly among countries, corroborating early reports of far greater pandemic severity in the Americas than in Australia, New Zealand, and Europe. A collaborative network to collect and analyze mortality and hospitalization surveillance data is needed to rapidly establish the severity of future pandemics. (aut. ref.

    Epidemiologic and virologic assessment of the 2009 influenza A (H1N1) pandemic on selected temperate countries in the Southern Hemisphere: Argentina, Australia, Chile, New Zealand and South Africa

    Get PDF
    Introduction and Setting: Our analysis compares the most comprehensive epidemiologic and virologic surveillance data compiled to date for laboratory-confirmed H1N1pdm patients between 1 April 2009 - 31 January 2010 from five temperate countries in the Southern Hemisphere-Argentina, Australia, Chile, New Zealand, and South Africa. Objective: We evaluate transmission dynamics, indicators of severity, and describe the co-circulation of H1N1pdm with seasonal influenza viruses. Results: In the five countries, H1N1pdm became the predominant influenza strain within weeks of initial detection. South Africa was unique, first experiencing a seasonal H3N2 wave, followed by a distinct H1N1pdm wave. Compared with the 2007 and 2008 influenza seasons, the peak of influenza-like illness (ILI) activity in four of the five countries was 3-6 times higher with peak ILI consultation rates ranging from 35/1,000 consultations/week in Australia to 275/100,000 population/week in New Zealand. Transmission was similar in all countries with the reproductive rate ranging from 1.2-1.6. The median age of patients in all countries increased with increasing severity of disease, 4-14% of all hospitalized cases required critical care, and 26-68% of fatal patients were reported to have ≥1 chronic medical condition. Compared with seasonal influenza, there was a notable downward shift in age among severe cases with the highest population-based hospitalization rates among children <5 years old. National population-based mortality rates ranged from 0.8-1.5/100,000. Conclusions: The difficulty experienced in tracking the progress of the pandemic globally, estimating its severity early on, and comparing information across countries argues for improved routine surveillance and standardization of investigative approaches and data reporting methods

    Estimating age-specific cumulative incidence for the 2009 influenza pandemic: A meta-analysis of A(H1N1)pdm09 serological studies from 19 countries

    No full text
    Background: The global impact of the 2009 influenza A(H1N1) pandemic (H1N1pdm) is not well understood. Objectives: We estimate overall and age-specific prevalence of cross-reactive antibodies to H1N1pdm virus and rates of H1N1pdm infection during the first year of the pandemic using data from published and unpublished H1N1pdm seroepidemiological studies. Methods: Primary aggregate H1N1pdm serologic data from each study were stratified in standardized age groups and evaluated based on when sera were collected in relation to national or subnational peak H1N1pdm activity. Seropositivity was assessed using well-described and standardized hemagglutination inhibition (HI titers ≥32 or ≥40) and microneutralization (MN ≥ 40) laboratory assays. The prevalence of cross-reactive antibodies to the H1N1pdm virus was estimated for studies using sera collected prior to the start of the pandemic (between 2004 and April 2009); H1N1pdm cumulative incidence was estimated for studies in which collected both pre- and post-pandemic sera; and H1N1pdm seropositivity was calculated from studies with post-pandemic sera only (collected between December 2009-June 2010). Results: Data from 27 published/unpublished studies from 19 countries/administrative regions - Australia, Canada, China, Finland, France, Germany, Hong Kong SAR, India, Iran, Italy, Japan, Netherlands, New Zealand, Norway, Reunion Island, Singapore, United Kingdom, United States, and Vietnam - were eligible for inclusion. The overall age-standardized pre-pandemic prevalence of cross-reactive antibodies was 5% (95%CI 3-7%) and varied significantly by age with the highest rates among persons ≥65 years old (14% 95%CI 8-24%). Overall age-standardized H1N1pdm cumulative incidence was 24% (95%CI 20-27%) and varied significantly by age with the highest in children 5-19 (47% 95%CI 39-55%) and 0-4 years old (36% 95%CI 30-43%). Conclusions: Our results offer unique insight into the global impact of the H1N1 pandemic and highlight the need for standardization of seroepidemiological studies and for their inclusion in pre-pandemic preparedness plans. Our results taken together with recent global pandemic respiratory-associated mortality estimates suggest that the case fatality ratio of the pandemic virus was approximately 0·02%. © 2013 John Wiley &amp; Sons Ltd
    corecore