3 research outputs found

    Optimised padlock probe ligation and microarray detection of multiple (non-authorised) GMOs in a single reaction

    Get PDF
    Background To maintain EU GMO regulations, producers of new GM crop varieties need to supply an event-specific method for the new variety. As a result methods are nowadays available for EU-authorised genetically modified organisms (GMOs), but only to a limited extent for EU-non-authorised GMOs (NAGs). In the last decade the diversity of genetically modified (GM) ingredients in food and feed has increased significantly. As a result of this increase GMO laboratories currently need to apply many different methods to establish to potential presence of NAGs in raw materials and complex derived products. Results In this paper we present an innovative method for detecting (approved) GMOs as well as the potential presence of NAGs in complex DNA samples containing different crop species. An optimised protocol has been developed for padlock probe ligation in combination with microarray detection (PPLMD) that can easily be scaled up. Linear padlock probes targeted against GMO-events, -elements and -species have been developed that can hybridise to their genomic target DNA and are visualised using microarray hybridisation. In a tenplex PPLMD experiment, different genomic targets in Roundup-Ready soya, MON1445 cotton and Bt176 maize were detected down to at least 1%. In single experiments, the targets were detected down to 0.1%, i.e. comparable to standard qPCR. Conclusion Compared to currently available methods this is a significant step forward towards multiplex detection in complex raw materials and derived products. It is shown that the PPLMD approach is suitable for large-scale detection of GMOs in real-life samples and provides the possibility to detect and/or identify NAGs that would otherwise remain undetecte

    Comparison and transfer testing of multiplex ligation detection methods for GM plants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the increasing number of GMOs on the global market the maintenance of European GMO regulations is becoming more complex. For the analysis of a single food or feed sample it is necessary to assess the sample for the presence of many GMO-targets simultaneously at a sensitive level. Several methods have been published regarding DNA-based multidetection. Multiplex ligation detection methods have been described that use the same basic approach: i) hybridisation and ligation of specific probes, ii) amplification of the ligated probes and iii) detection and identification of the amplified products. Despite they all have this same basis, the published ligation methods differ radically. The present study investigated with real-time PCR whether these different ligation methods have any influence on the performance of the probes. Sensitivity and the specificity of the padlock probes (PLPs) with the ligation protocol with the best performance were also tested and the selected method was initially validated in a laboratory exchange study.</p> <p>Results</p> <p>Of the ligation protocols tested in this study, the best results were obtained with the PPLMD I and PPLMD II protocols and no consistent differences between these two protocols were observed. Both protocols are based on padlock probe ligation combined with microarray detection. Twenty PLPs were tested for specificity and the best probes were subjected to further evaluation. Up to 13 targets were detected specifically and simultaneously. During the interlaboratory exchange study similar results were achieved by the two participating institutes (NIB, Slovenia, and RIKILT, the Netherlands).</p> <p>Conclusions</p> <p>From the comparison of ligation protocols it can be concluded that two protocols perform equally well on the basis of the selected set of PLPs. Using the most ideal parameters the multiplicity of one of the methods was tested and 13 targets were successfully and specifically detected. In the interlaboratory exchange study it was shown that the selected method meets the 0.1% sensitivity criterion. The present study thus shows that specific and sensitive multidetection of GMO targets is now feasible.</p
    corecore