30 research outputs found

    Genetic control of Eucalyptus urophylla and E. grandis resistance to canker caused by Chrysoporthe cubensis

    Get PDF
    Chrysophorte cubensis induced canker occurs in nearly all tropical and subtropical regions where eucalypts are planted, causing losses in both wood quality and volume productivity, especially so in the warmer and more humid regions of Brazil. The wide inter and intra-specific genetic variability of resistance to canker among Eucalyptus species facilitates the selection of resistant plants. In this study, we evaluated resistance to this pathogen in five Eucalyptus grandis (G) and 15 E. urophylla (U) trees, as well as in 495 individuals from 27 progenies derived from crosses between the trees. In the field, six-months-old test seedlings were inoculated with C. cubensis. Lesion length in the xylem and bark was measured eight months later. The results demonstrated that xylem lesions could preferentially be used for the selection of resistant clones. Eight trees (7 U and 1 G) were susceptible, and the remainder (8 U and 4 G) resistant. Individual narrow and broad sense heritability estimates were 17 and 81%, respectively, thereby suggesting that canker resistance is quantitative and highly dependent on dominance and epistasis

    Population Genetic Analysis Infers Migration Pathways of Phytophthora ramorum in US Nurseries

    Get PDF
    Recently introduced, exotic plant pathogens may exhibit low genetic diversity and be limited to clonal reproduction. However, rapidly mutating molecular markers such as microsatellites can reveal genetic variation within these populations and be used to model putative migration patterns. Phytophthora ramorum is the exotic pathogen, discovered in the late 1990s, that is responsible for sudden oak death in California forests and ramorum blight of common ornamentals. The nursery trade has moved this pathogen from source populations on the West Coast to locations across the United States, thus risking introduction to other native forests. We examined the genetic diversity of P. ramorum in United States nurseries by microsatellite genotyping 279 isolates collected from 19 states between 2004 and 2007. Of the three known P. ramorum clonal lineages, the most common and genetically diverse lineage in the sample was NA1. Two eastward migration pathways were revealed in the clustering of NA1 isolates into two groups, one containing isolates from Connecticut, Oregon, and Washington and the other isolates from California and the remaining states. This finding is consistent with trace forward analyses conducted by the US Department of Agriculture's Animal and Plant Health Inspection Service. At the same time, genetic diversities in several states equaled those observed in California, Oregon, and Washington and two-thirds of multilocus genotypes exhibited limited geographic distributions, indicating that mutation was common during or subsequent to migration. Together, these data suggest that migration, rapid mutation, and genetic drift all play a role in structuring the genetic diversity of P. ramorum in US nurseries. This work demonstrates that fast-evolving genetic markers can be used to examine the evolutionary processes acting on recently introduced pathogens and to infer their putative migration patterns, thus showing promise for the application of forensics to plant pathogens

    Evidence for salicylic acid signalling and histological changes in the defence response of Eucalyptus grandis to Chrysoporthe austroafricana

    Get PDF
    Eucalyptus species are cultivated for forestry and are of economic importance. The fungal stem canker pathogen Chrysoporthe austroafricana causes disease of varying severity on E. grandis. The Eucalyptus grandis-Chrysoporthe austroafricana interaction has been established as a model system for studying Eucalyptus antifungal defence. Previous studies revealed that the phytohormone salicylic acid (SA) affects the levels of resistance in highly susceptible (ZG14) and moderately resistant (TAG5) clones. The aims of this study were to examine histochemical changes in response to wounding and inoculation as well as host responses at the protein level. The anatomy and histochemical changes induced by wounding and inoculation were similar between the clones, suggesting that anatomical differences do not underlie their different levels of resistance. Tyloses and gum-like substances were present after inoculation and wounding, but cell death occurred only after inoculation. Hyphae of C. austroafricana were observed inside dead and living cells, suggesting that the possibility of a hemibiotrophic interaction requires further investigation. Proteomics analysis revealed the possible involvement of proteins associated with cell death, SA signalling and systemic resistance. In combination with previous information, this study forms a basis for future functional characterisation of candidate genes involved in resistance of E. grandis to C. austroafricana

    Effect of Diaporthe RNA virus 1 (DRV1) on growth and pathogenicity of different Diaporthe species

    No full text
    A 4.1 kbp positive-strand RNA virus known as Diaporthe RNA virus 1 (DRV1) occurs in hypovirulent, non-sporulating isolates of the fungal pathogen Diaporthe perjuncta. A full-length cDNA clone of DRV1 was developed and RNA transcribed from the cDNA clone used to transfect different Diaporthe spp. The transfected species included three D. ambigua isolates and an unidentified Phomopsis asexual state of a Diaporthe sp. Successful transfections were confirmed using RT-PCR. Although the in vitro-transcribed positive sense single-stranded RNA used for transfection included vector sequences at both ends, the genomes of progeny virus from DRV1-transfected isolates were free of the vector sequences. Transfection resulted in morphological changes in these fungal pathogens. However, the presence of DRV1 did not reduce growth rate in two of the three D. ambigua or the Phomopsis sp. significantly. Pathogenicity studies showed that the transfected isolates have reduced aggresiveness
    corecore