10 research outputs found

    Genetic analysis of seed traits in \u3ci\u3eSorghum bicolor\u3c/i\u3e that affect the human gut microbiome

    Get PDF
    Prebiotic fibers, polyphenols and other molecular components of food crops significantly affect the composition and function of the human gut microbiome and human health. The abundance of these, frequently uncharacterized, microbiome-active components vary within individual crop species. Here, we employ high throughput in vitro fermentations of pre-digested grain using a human microbiome to identify segregating genetic loci in a food crop, sorghum, that alter the composition and function of human gut microbes. Evaluating grain produced by 294 sorghum recombinant inbreds identifies 10 loci in the sorghum genome associated with variation in the abundance of microbial taxa and/or microbial metabolites. Two loci co-localize with sorghum genes regulating the biosynthesis of condensed tannins. We validate that condensed tannins stimulate the growth of microbes associated with these two loci. Our work illustrates the potential for genetic analysis to systematically discover and characterize molecular components of food crops that influence the human gut microbiome

    Carbohydrate utilization by the gut microbiome determines host health responsiveness to whole grain type and processing methods

    Get PDF
    Little is known about how interactions among grain processing, grain type, and carbohydrate utilization (CU) by the microbiome influence the health benefits of whole grains. Therefore, two whole grains – brown rice and whole wheat – and two processing methods – boiling (porridge) and extrusion – were studied for their effects on host metabolic outcomes in mice harboring human microbiomes previously shown in vitro to have high or low CU. Mice carrying either microbiome experienced increases in body weight and glycemia when consuming Western diets supplemented with extruded grains versus porridge. However, mice with the high but not low CU microbiome also gained more weight and fat over time and were less glucose tolerant when consuming extruded grain diets. In high CU microbiome mice, the exacerbated negative health outcomes associated with extrusion were related to altered abundances of Lachnospiraceae and Ruminococcaceae as well as elevated sugar degradation and colonic acetate production. The amplicon sequence variants (ASVs) associated with extruded and porridge diets in this in vivo study were not the same as those identified in our prior in vitro study; however, the predicted functions were highly correlated. In conclusion, mice harboring both high and low CU microbiomes responded to the whole grain diets similarly, except the high CU microbiome mice exhibited exacerbated effects due to excessive acetate production, indicating that CU by the microbiome is linked to host metabolic health outcomes. Our work demonstrates that a greater understanding of food processing effects on the microbiome is necessary for developing foods that promote rather than diminish host health

    Fecal Short-Chain Fatty Acid Concentrations Increase in Newly Paired Male Marmosets (Callithrix jacchus)

    Get PDF
    The role by which the gut microbiome influences host health (e.g., energy equilibrium and immune system) may be partly mediated by short-chain fatty acids, which are bacterial fermentation products from the dietary fibers. However, little is known about longitudinal changes in gut microbiome metabolites during cohabitation alongside social contact. In common marmosets (Callithrix jacchus), the gut microbiome community is influenced by social contact, as newly paired males and females develop convergent microbial profiles. Here, we monitored the dynamics of short-chain fatty acid concentrations in common marmoset feces from the prepairing (PRE) to postpairing (POST) stages. In males, we observed that the con- centrations of acetate, propionate, isobutyrate, and isovalerate significantly increased in the POST stage compared to the PRE stage. However, no significant changes were found in females. We further found that the propionate concentration was significantly positively correlated with the abundance of Phascolarctobacterium in the male feces. Thus, the sex difference in the changes in the concentrations of short-chain fatty acids might be related to sex-biased gut microbiome transmission after pairing. We suggest that the significant changes in the gut microbiomes and some short-chain fatty acids of the common marmoset during cohabitation may contribute to physiological homeostasis during pairing

    Host Identity and Geographic Location Significantly Affect Gastrointestinal Microbial Richness and Diversity in Western Lowland Gorillas (Gorilla gorilla gorilla) under Human Care

    Get PDF
    The last few decades have seen an outpouring of gastrointestinal (GI) microbiome studies across diverse host species. Studies have ranged from assessments of GI microbial richness and diversity to classification of novel microbial lineages. Assessments of the “normal” state of the GI microbiome composition across multiple host species has gained increasing importance for distinguishing healthy versus diseased states. This study aimed to determine baselines and trends over time to establish “typical” patterns of GI microbial richness and diversity, as well as interindividual variation, in three populations of western lowland gorillas (Gorilla gorilla gorilla) under human care at three zoological institutions in North America. Fecal samples were collected from 19 western lowland gorillas every two weeks for seven months (n = 248). Host identity and host institution significantly affected GI microbiome community composition (p \u3c 0.05), although host identity had the most consistent and significant effect on richness (p = 0.03) and Shannon diversity (p = 0.004) across institutions. Significant changes in microbial abundance over time were observed only at Denver Zoo (p\u3c 0.05). Our results suggest that individuality contributes to most of the observed GI microbiome variation in the study populations. Our results also showed no significant changes in any individual’s microbial richness or Shannon diversity during the 7-month study period. While some microbial taxa (Prevotella, Prevotellaceae and Ruminococcaceae) were detected in all gorillas at varying levels, determining individual baselines for microbial composition comparisons may be the most useful diagnostic tool for optimizing non-human primate health under human care

    The waxy mutation in sorghum and other cereal grains reshapes the gut microbiome by reducing levels of multiple beneficial species

    Get PDF
    Waxy starches from cereal grains contain \u3e90% amylopectin due to naturally occurring mutations that block amylose biosynthesis. Waxy starches have unique organoleptic characteristics (e.g. sticky rice) as well as desirable physicochemical properties for food processing. Using isogenic pairs of wild type sorghum lines and their waxy derivatives, we studied the effects of waxy starches in the whole grain context on the human gut microbiome. In vitro fermentations with human stool microbiomes show that beneficial taxonomic and metabolic signatures driven by grain from wild type parental lines are lost in fermentations of grain from the waxy derivatives and the beneficial signatures can be restored by addition of resistant starch. These undesirable effects are conserved in fermentations of waxy maize, wheat, rice and millet. We also demonstrate that humanized gnotobiotic mice fed low fiber diets supplemented with 20% grain from isogenic pairs of waxy vs. wild type parental sorghum have significant differences in microbiome composition and show increased weight gain. We conclude that the benefits of waxy starches on food functionality can have unintended tradeoff effects on the gut microbiome and host physiology that could be particularly relevant in human populations consuming large amounts of waxy grains

    Genetic Analysis in Common Bean for Variation Affecting the Human Gut Microbiome

    No full text
    Our increasing understanding of host-diet-microbiome interactions in health and disease creates a new opportunity to orient crop-improvement programs toward quality traits that can be used to improve human health through the microbiome. One of the biggest barriers to developing/improving human health traits that affect the human microbiome is the lack of approaches for phenotyping “Microbiome Active Traits” (MATs) in crop plants. To overcome this, a high-throughput Automated in vitro Microbiome Screen (AiMS) that enables study of MATs as complex traits of crops was developed. To demonstrate utility and multi-dimensional scalability of AiMS for phenotyping, we capitalized on the unique ancestry, population structure, and genomics of a globally important commodity, common beans (Phaseolus vulgaris L.). Using the AiMS platform, 24 cultivars of common bean representing genetic diversity from the Mesoamerican Diversity Panel (MDP) were studied across 12 microbiomes. Results indicated population structure of common bean (landraces and market classes) had significant, shared effects on microbial diversity, composition, and function across multiple microbiomes. AiMS was further leveraged in a Genome-Wide Association Study (GWAS) to study the genetic architecture of MATs using 299 genotypes of common bean of the MDP across three human microbiomes. Features of the microbiome from the AiMS-based phenotyping were used as quantitative traits in the GWAS. GWAS identified seven pleiotropic major effect loci (MEL) on six chromosomes in the common bean genome where genetic variation had significant influence on microbiome features. Genomic analyses within the MEL with the most significant marker-trait associations identified genes related to glycyrrhetinate biosynthesis, a precursor of saponins that have known bioactivity. In conclusion, the studies presented in this dissertation illustrate that genetic analysis of AiMS-based phenotypes provides a powerful approach for identifying new types of traits (MATs) in food crops that may have important impacts on the human gut microbiome, ultimately providing breeders with unique, human-health associated phenotypes that can be incorporated into crop improvement programs

    Fecal Short-Chain Fatty Acid Concentrations Increase in Newly Paired Male Marmosets (Callithrix jacchus)

    Get PDF
    The role by which the gut microbiome influences host health (e.g., energy equilibrium and immune system) may be partly mediated by short-chain fatty acids, which are bacterial fermentation products from the dietary fibers. However, little is known about longitudinal changes in gut microbiome metabolites during cohabitation alongside social contact. In common marmosets (Callithrix jacchus), the gut microbiome community is influenced by social contact, as newly paired males and females develop convergent microbial profiles. Here, we monitored the dynamics of short-chain fatty acid concentrations in common marmoset feces from the prepairing (PRE) to postpairing (POST) stages. In males, we observed that the con- centrations of acetate, propionate, isobutyrate, and isovalerate significantly increased in the POST stage compared to the PRE stage. However, no significant changes were found in females. We further found that the propionate concentration was significantly positively correlated with the abundance of Phascolarctobacterium in the male feces. Thus, the sex difference in the changes in the concentrations of short-chain fatty acids might be related to sex-biased gut microbiome transmission after pairing. We suggest that the significant changes in the gut microbiomes and some short-chain fatty acids of the common marmoset during cohabitation may contribute to physiological homeostasis during pairing

    Sex Bias in Gut Microbiome Transmission in Newly Paired Marmosets (\u3ci\u3eCallithrix jacchus\u3c/i\u3e)

    Get PDF
    Social behavior can alter the microbiome composition via transmission among social partners, but there have been few controlled experimental studies of gut microbiome transmission among social partners in primates. We collected longitudinal fecal samples from eight unrelated male-female pairs of marmoset monkeys prior to pairing and for 8 weeks following pairing. We then sequenced 16S rRNA to characterize the changes in the gut microbiome that resulted from the pairing. Marmoset pairs had a higher similarity in gut microbiome communities after pairing than before pairing. We discovered sex differences in the degrees of change in gut microbiome communities following pairing. Specifically, the gut microbiome com-munities in males exhibited greater dissimilarity from the prepairing stage (baseline) than the gut microbiome communities in females. Conversely, females showed a gradual stabilization in the rate of the gut microbiome community turnover. Importantly, we found that the male fecal samples harbored more female-source gut microbes after pairing, especially early in pairing (paired test, P 0.05), possibly linked to sex bias in the frequencies of social behavior. From this controlled study, we re-port for the first time that pair-living primates undergo significant changes in gut microbiome during pairing and that females transmit more microbes to their partners than males do. The potential biases influencing which microbes are transmitted on the basis of sex and whether they are due to sex biases in other behavioral or physiological features need to be widely investigated in other nonhuman primates and humans in the future. IMPORTANCE In this controlled study, we collected longitudinal fecal samples from 16 male and female marmoset monkeys for 2 weeks prior to and for 8 weeks after pairing in male-female dyads. We report for the first time that marmoset monkeys undergo significant changes to the gut microbiome following pairing and that these changes are sex-biased; i.e., females transmit more microbes to their social partners than males do. Marmosets exhibit pair bonding behavior such as spatial proximity, physical contact, and grooming, and sex biases in these behavioral patterns may contribute to the observed sex bias in social transmission of gut microbiomes

    Sex Bias in Gut Microbiome Transmission in Newly Paired Marmosets (\u3ci\u3eCallithrix jacchus\u3c/i\u3e)

    Get PDF
    Social behavior can alter the microbiome composition via transmission among social partners, but there have been few controlled experimental studies of gut microbiome transmission among social partners in primates. We collected longitudinal fecal samples from eight unrelated male-female pairs of marmoset monkeys prior to pairing and for 8 weeks following pairing. We then sequenced 16S rRNA to characterize the changes in the gut microbiome that resulted from the pairing. Marmoset pairs had a higher similarity in gut microbiome communities after pairing than before pairing. We discovered sex differences in the degrees of change in gut microbiome communities following pairing. Specifically, the gut microbiome com-munities in males exhibited greater dissimilarity from the prepairing stage (baseline) than the gut microbiome communities in females. Conversely, females showed a gradual stabilization in the rate of the gut microbiome community turnover. Importantly, we found that the male fecal samples harbored more female-source gut microbes after pairing, especially early in pairing (paired test, P 0.05), possibly linked to sex bias in the frequencies of social behavior. From this controlled study, we re-port for the first time that pair-living primates undergo significant changes in gut microbiome during pairing and that females transmit more microbes to their partners than males do. The potential biases influencing which microbes are transmitted on the basis of sex and whether they are due to sex biases in other behavioral or physiological features need to be widely investigated in other nonhuman primates and humans in the future. IMPORTANCE In this controlled study, we collected longitudinal fecal samples from 16 male and female marmoset monkeys for 2 weeks prior to and for 8 weeks after pairing in male-female dyads. We report for the first time that marmoset monkeys undergo significant changes to the gut microbiome following pairing and that these changes are sex-biased; i.e., females transmit more microbes to their social partners than males do. Marmosets exhibit pair bonding behavior such as spatial proximity, physical contact, and grooming, and sex biases in these behavioral patterns may contribute to the observed sex bias in social transmission of gut microbiomes

    Host Identity and Geographic Location Significantly Affect Gastrointestinal Microbial Richness and Diversity in Western Lowland Gorillas (Gorilla gorilla gorilla) under Human Care

    No full text
    The last few decades have seen an outpouring of gastrointestinal (GI) microbiome studies across diverse host species. Studies have ranged from assessments of GI microbial richness and diversity to classification of novel microbial lineages. Assessments of the “normal” state of the GI microbiome composition across multiple host species has gained increasing importance for distinguishing healthy versus diseased states. This study aimed to determine baselines and trends over time to establish “typical” patterns of GI microbial richness and diversity, as well as inter-individual variation, in three populations of western lowland gorillas (Gorilla gorilla gorilla) under human care at three zoological institutions in North America. Fecal samples were collected from 19 western lowland gorillas every two weeks for seven months (n = 248). Host identity and host institution significantly affected GI microbiome community composition (p < 0.05), although host identity had the most consistent and significant effect on richness (p = 0.03) and Shannon diversity (p = 0.004) across institutions. Significant changes in microbial abundance over time were observed only at Denver Zoo (p < 0.05). Our results suggest that individuality contributes to most of the observed GI microbiome variation in the study populations. Our results also showed no significant changes in any individual’s microbial richness or Shannon diversity during the 7-month study period. While some microbial taxa (Prevotella, Prevotellaceae and Ruminococcaceae) were detected in all gorillas at varying levels, determining individual baselines for microbial composition comparisons may be the most useful diagnostic tool for optimizing non-human primate health under human care
    corecore