17,120 research outputs found

    General energy bounds for systems of bosons with soft cores

    Full text link
    We study a bound system of N identical bosons interacting by model pair potentials of the form V(r) = A sgn(p)r^p + B/r^2, A > 0, B >= 0. By using a variational trial function and the `equivalent 2-body method', we find explicit upper and lower bound formulas for the N-particle ground-state energy in arbitrary spatial dimensions d > 2 for the two cases p = 2 and p = -1. It is demonstrated that the upper bound can be systematically improved with the aid of a special large-N limit in collective field theory

    Slow roll inflation in the presence of a dark energy coupling

    Get PDF
    In models of coupled dark energy, in which a dark energy scalar field couples to other matter components, it is natural to expect a coupling to the inflaton as well. We explore the consequences of such a coupling in the context of single-field slow-roll inflation. Assuming an exponential potential for the quintessence field we show that the coupling to the inflaton causes the quintessence field to be attracted toward the minimum of the effective potential. If the coupling is large enough, the field is heavy and is located at the minimum. We show how this affects the expansion rate and the slow-roll of the inflaton field, and therefore the primordial perturbations generated during inflation. We further show that the coupling has an important impact on the processes of reheating and preheating

    Interactions in high-mobility 2D electron and hole systems

    Full text link
    Electron-electron interactions mediated by impurities are studied in several high-mobility two-dimensional (electron and hole) systems where the parameter kBTτ/ℏk_BT\tau /\hbar changes from 0.1 to 10 (τ\tau is the momentum relaxation time). This range corresponds to the \textit{intermediate} and \textit {ballistic} regimes where only a few impurities are involved in electron-electron interactions. The interaction correction to the Drude conductivity is detected in the temperature dependence of the resistance and in the magnetoresistance in parallel and perpendicular magnetic fields. The effects are analysed in terms of the recent theories of electron interactions developed for the ballistic regime. It is shown that the character of the fluctuation potential (short-range or long-range) is an important factor in the manifestation of electron-electron interactions in high-mobility 2D systems.Comment: 22 pages, 11 figures; to appear in proceedings of conference "Fundamental Problems of Mesoscopic Physics", Granada, Spain, 6-11 September, 200

    Initial Characteristics of Kepler Short Cadence Data

    Full text link
    The Kepler Mission offers two options for observations -- either Long Cadence (LC) used for the bulk of core mission science, or Short Cadence (SC) which is used for applications such as asteroseismology of solar-like stars and transit timing measurements of exoplanets where the 1-minute sampling is critical. We discuss the characteristics of SC data obtained in the 33.5-day long Quarter 1 (Q1) observations with Kepler which completed on 15 June 2009. The truly excellent time series precisions are nearly Poisson limited at 11th magnitude providing per-point measurement errors of 200 parts-per-million per minute. For extremely saturated stars near 7th magnitude precisions of 40 ppm are reached, while for background limited measurements at 17th magnitude precisions of 7 mmag are maintained. We note the presence of two additive artifacts, one that generates regularly spaced peaks in frequency, and one that involves additive offsets in the time domain inversely proportional to stellar brightness. The difference between LC and SC sampling is illustrated for transit observations of TrES-2.Comment: 5 pages, 4 figures, ApJ Letters in pres

    Straight Line Orbits in Hamiltonian Flows

    Full text link
    We investigate periodic straight-line orbits (SLO) in Hamiltonian force fields using both direct and inverse methods. A general theorem is proven for natural Hamiltonians quadratic in the momenta in arbitrary dimension and specialized to two and three dimension. Next we specialize to homogeneous potentials and their superpositions, including the familiar H\'enon-Heiles problem. It is shown that SLO's can exist for arbitrary finite superpositions of NN-forms. The results are applied to a family of generalized H\'enon-Heiles potentials having discrete rotational symmetry. SLO's are also found for superpositions of these potentials.Comment: laTeX with 6 figure

    Dark Matters in Axino Gravitino Cosmology

    Full text link
    It is suggested that the axino mass in the 1 MeV region and gravitino mass in the eV region can provide an axino lifetime of order of the time of photon decoupling. In this case, some undecayed axinos act like cold dark matters and some axino decay products (gravitinos and hot axions) act like hot dark matters at the time of galaxy formation.Comment: 9 pages, Late

    A Seesaw Mechanism in the Higgs Sector

    Full text link
    In this letter we revisit the seesaw Higgs mechanism. We show how a seesaw mechanism in a two Higgs doublets model can trigger the electroweak symmetry breaking if at least one of the eigenvalues of the squared mass matrix is negative. We then consider two special cases of interest. In the decoupling scenario, there is only one scalar degree of freedom in the low energy regime. In the degenerate scenario, all five degrees of freedom are in the low energy regime and will lead to observables effects at the LHC. Furthermore, in that scenario, it is possible to impose a discrete symmetry between the doublets that makes the extra neutral degrees of freedom stable. These are thus viable dark matter candidates. We find an interesting relation between the electroweak symmetry breaking mechanism and dark matter.Comment: 10 page

    A Radial Velocity Survey of the Cygnus OB2 Association

    Get PDF
    We conducted a radial velocity survey of the Cygnus OB2 Association over a 6 year (1999 - 2005) time interval to search for massive close binaries. During this time we obtained 1139 spectra on 146 OB stars to measure mean systemic radial velocities and radial velocity variations. We spectroscopically identify 73 new OB stars for the first time, the majority of which are likely to be Association members. Spectroscopic evidence is also presented for a B3Iae classification and temperature class variation (B3 - B8) on the order of 1 year for Cygnus OB2 No. 12. Calculations of the intial mass function with the current spectroscopic sample yield Gamma = -2.2 +/- 0.1. Of the 120 stars with the most reliable data, 36 are probable and 9 are possible single-lined spectroscopic binaries. We also identify 3 new and 8 candidate double-lined spectroscopic binaries. These data imply a lower limit on the massive binary fraction of 30% - 42%. The calculated velocity dispersion for Cygnus OB2 is 2.44 +/- km/s, which is typical of open clusters. No runaway OB stars were found.Comment: 56 pages, 23 figures, 5 tables, accepted for publication in the Astrophysical Journa

    Diffusion in a Granular Fluid - Theory

    Full text link
    Many important properties of granular fluids can be represented by a system of hard spheres with inelastic collisions. Traditional methods of nonequilibrium statistical mechanics are effective for analysis and description of the inelastic case as well. This is illustrated here for diffusion of an impurity particle in a fluid undergoing homogeneous cooling. An appropriate scaling of the Liouville equation is described such that the homogeneous cooling ensemble and associated time correlation functions map to those of a stationary state. In this form the familiar methods of linear response can be applied, leading to Green - Kubo and Einstein representations of diffusion in terms of the velocity and mean square displacement correlation functions. These correlation functions are evaluated approximately using a cumulant expansion and from kinetic theory, providing the diffusion coefficient as a function of the density and the restitution coefficients. Comparisons with results from molecular dynamics simulation are given in the following companion paper
    • 

    corecore