51 research outputs found

    The Prevalence of Adverse Cardiometabolic Responses to Exercise Training with Evidence-based Practice is Low

    Get PDF
    Background: The purpose of this study was to determine the prevalence of individuals who experienced exercise-induced adverse cardiometabolic response (ACR), following an evidence-based, individualized, community exercise program. Methods: Prevalence of ACR was retrospectively analyzed in 332 adults (190 women, 142 men) before and after a 14-week supervised community exercise program. ACR included an exercise training-induced increase in systolic blood pressure of 10mmHg,increaseinplasmatriglycerides(TG)of.37.0mg/dL(10 mmHg, increase in plasma triglycerides (TG) of .37.0 mg/dL (0.42 mmol/L), or decrease in high-density lipoprotein cholesterol (HDL-C) of .4.0 mg/dL (0.12 mmol/L). A second category of ACR was also defined – this was ACR that resulted in a metabolic syndrome component (ACR-risk) as a consequence of the adverse response. Results: According to the above criteria, prevalence of ACR between baseline and post-program was systolic blood pressure (6.0%), TG (3.6%), and HDL-C (5.1%). The prevalence of ACR-risk was elevated TG (3.2%), impaired fasting blood glucose (2.7%), low HDL-C (2.2%), elevated waist circumference (1.3%), and elevated blood pressure (0.6%). Conclusion: Evidence-based practice exercise programming may attenuate the prevalence of exercise training-induced ACR. Our findings provide important preliminary evidence needed for the vision of exercise prescription as a personalized form of preventative medicine to become a reality

    Impaired Endothelium-dependent Vasodilation in Overweight and Obese Adult Humans is Not Limited to Muscarinic Receptor Agonists

    Get PDF
    Muscarinic receptor agonists have primarily been used to characterize endothelium-dependent vasodilator dysfunction with overweight/obesity. Reliance on a single class of agonist, however, yields limited, and potentially misleading, information regarding endothelial vasodilator capacity. The aims of this study were to determine 1) whether the overweight/obesity-related reduction in endothelium-dependent vasodilation extends beyond muscarinic receptor agonists and 2) whether the contribution of nitric oxide (NO) to endothelium-dependent vasodilation is reduced in overweight/obese adults. Eighty-six middle-aged and older adults were studied: 42 normal-weight (54 +/- 1 yr, 21 men and 21 women, body mass index = 23.4 +/- 0.3 kg/m(2)) and 44 overweight/obese (54 +/- 1 yr, 28 men and 16 women, body mass index = 30.3 +/- 0.6 kg/m(2)) subjects. Forearm blood flow (FBF) responses to intra-arterial infusions of acetylcholine in the absence and presence of the endothelial NO synthase inhibitor N(G)-monomethyl-l-arginine, methacholine, bradykinin, substance P, isoproterenol, and sodium nitroprusside were measured by strain-gauge plethysmography. FBF responses to each endothelial agonist were significantly blunted in the overweight/obese adults. Total FBF (area under the curve) to acetylcholine (50 +/- 5 vs. 79 +/- 4 ml/100 ml tissue), methacholine (55 +/- 4 vs. 86 +/- 5 ml/100 ml tissue), bradykinin (62 +/- 5 vs. 85 +/- 4 ml/100 ml tissue), substance P (37 +/- 4 vs. 57 +/- 5 ml/100 ml tissue), and isoproterenol (62 +/- 4 vs. 82 +/- 6 ml/100 ml tissue) were 30%-40% lower in the overweight/obese than normal-weight adults. N(G)-monomethyl-l-arginine significantly reduced the FBF response to acetylcholine to the same extent in both groups. There were no differences between the groups in the FBF responses to sodium nitroprusside. These results indicate that agonist-stimulated endothelium-dependent vasodilation is universally impaired with overweight/obesity. Moreover, this impairment appears to be independent of NO

    17Beta-estradiol Increases Basal But not Bradykinin-stimulated Release of Active t-PA in Young Postmenopausal Women

    Get PDF
    Angiotensin-converting enzyme inhibition potentiates basal and bradykinin-stimulated tissue-type plasminogen activator (t-PA) release to a greater extent in women than in men. This study tested the hypothesis that 17beta-estradiol enhances the effect of angiotensin-converting enzyme inhibition on t-PA release in young postmenopausal women. We conducted a double-blind, prospective, crossover study in 14 young postmenopausal women (mean age 48.2+/-2.3 years) who were randomized to receive 17beta-estradiol (1 mg/d) or matching placebo for 4 weeks. At the end of each treatment period, we measured the effect of intraarterial infusion of bradykinin, methacholine, and nitroprusside on forearm blood flow and net t-PA release, before and during intraarterial enalaprilat (0.33 microg/min/100 mL forearm volume). 17Beta-estradiol significantly reduced baseline venous plasminogen activator inhibitor-1 antigen (4.4+/-1.4 versus 10.4+/-2.5 ng/mL, P=0.001) and t-PA antigen (5.5+/-0.6 versus 7.5+/-1.3 ng/mL, P=0.022) compared with placebo. 17Beta-estradiol increased basal forearm vascular release of active t-PA compared with placebo (1.2+/-0.3 IU/mL/min versus 0.4+/-0.1 IU/mL/min respectively, P=0.032), without increasing t-PA antigen release (P=0.761). Enalaprilat significantly increased basal net t-PA antigen release (from -0.8+/-1.0 to 3.2+/-1.2 ng/min/100 mL, P=0.012), but not the release of active t-PA, during either placebo or 17beta-estradiol. Enalaprilat potentiated bradykinin-stimulated vasodilation and t-PA antigen and activity release similarly during placebo and 17beta-estradiol treatment. 17Beta-estradiol treatment does not alter the effect of angiotensin-converting enzyme inhibition on basal t-PA antigen or on bradykinin-stimulated t-PA antigen or activity release. 17Beta-estradiol increases basal release of active t-PA in young postmenopausal women, consistent with enhanced vascular fibrinolytic function

    Aging and Endothelial Progenitor Cell Telomere Length in Healthy Men

    Get PDF
    BACKGROUND: Telomere length declines with age in mature endothelial cells and is thought to contribute to endothelial dysfunction and atherogenesis. Bone marrow-derived circulating endothelial progenitor cells (EPCs) are critical to vascular health as they contribute to both reendothelialization and neovascularization. We tested the hypothesis that EPC telomere length decreases with age in healthy adult humans.METHODS: Peripheral blood samples were collected from 40 healthy, non-obese, sedentary men: 12 young (age 21-34 years), 12 middle-aged (43-55 years) and 16 older (57-68 years). Putative EPCs were isolated from peripheral blood mononuclear cells and telomere length was determined using genomic DNA preparation and Southern hybridization techniques.RESULTS: EPC telomere length (base pairs) was approximately 20% (p=0.01) lower in the older (8492+523 bp) compared to the middle-aged (10,565+572 bp) and young (10,205+501 bp) men. Of note, there was no difference in EPC telomere length between the middle-aged and young men.CONCLUSIONS: These results demonstrate that EPC telomere length declines with age in healthy, sedentary men. Interestingly, telomere length was well preserved in the middle-aged compared to young men, suggesting that EPC telomere shortening occurs after the age of 55 years

    Bradykinin Type 2 Receptor BE1 Genotype Influences Bradykinin-dependent Vasodilation During Angiotensin-converting Enzyme Inhibition

    Get PDF
    To test the hypothesis that the bradykinin receptor 2 (BDKRB2) BE1+9/-9 polymorphism affects vascular responses to bradykinin, we measured the effect of intra-arterial bradykinin on forearm blood flow and tissue-type plasminogen activator (t-PA) release in 89 normotensive, nonsmoking, white American subjects in whom degradation of bradykinin was blocked by enalaprilat. BE1 genotype frequencies were +9/+9:+9/-9:-9/-9=19:42:28. BE1 genotype was associated with systolic blood pressure (121.4+/-2.8, 113.8+/-1.8, and 110.6+/-1.8 mm Hg in +9/+9, +9/-9, and -9/-9 groups, respectively; P=0.007). In the absence of enalaprilat, bradykinin-stimulated forearm blood flow, forearm vascular resistance, and net t-PA release were similar among genotype groups. Enalaprilat increased basal forearm blood flow (P=0.002) and decreased basal forearm vascular resistance (P=0.01) without affecting blood pressure. Enalaprilat enhanced the effect of bradykinin on forearm blood flow, forearm vascular resistance, and t-PA release (all P\u3c0.001). During enalaprilat, forearm blood flow was significantly lower and forearm vascular resistance was higher in response to bradykinin in the +9/+9 compared with +9/-9 and -9/-9 genotype groups (P=0.04 for both). t-PA release tended to be decreased in response to bradykinin in the +9/+9 group (P=0.08). When analyzed separately by gender, BE1 genotype was associated with bradykinin-stimulated t-PA release in angiotensin-converting enzyme inhibitor-treated men but not women (P=0.02 and P=0.77, respectively), after controlling for body mass index. There was no effect of BE1 genotype on responses to the bradykinin type 2 receptor-independent vasodilator methacholine during enalaprilat. In conclusion, the BDKRB2 BE1 polymorphism influences bradykinin type 2 receptor-mediated vasodilation during angiotensin-converting enzyme inhibition

    Aging and Endothelial Progenitor Cell Telomere Length in Healthy Men

    Get PDF
    BACKGROUND: Telomere length declines with age in mature endothelial cells and is thought to contribute to endothelial dysfunction and atherogenesis. Bone marrow-derived circulating endothelial progenitor cells (EPCs) are critical to vascular health as they contribute to both reendothelialization and neovascularization. We tested the hypothesis that EPC telomere length decreases with age in healthy adult humans. METHODS: Peripheral blood samples were collected from 40 healthy, non-obese, sedentary men: 12 young (age 21-34 years), 12 middle-aged (43-55 years) and 16 older (57-68 years). Putative EPCs were isolated from peripheral blood mononuclear cells and telomere length was determined using genomic DNA preparation and Southern hybridization techniques. RESULTS: EPC telomere length (base pairs) was approximately 20% (p=0.01) lower in the older (8492+523 bp) compared to the middle-aged (10,565+572 bp) and young (10,205+501 bp) men. Of note, there was no difference in EPC telomere length between the middle-aged and young men. CONCLUSIONS: These results demonstrate that EPC telomere length declines with age in healthy, sedentary men. Interestingly, telomere length was well preserved in the middle-aged compared to young men, suggesting that EPC telomere shortening occurs after the age of 55 years

    Basal Endothelial Nitric Oxide Release is Preserved in Overweight and Obese Adults

    Get PDF
    OBJECTIVE: Impaired basal nitric oxide release is associated with a number of cardiovascular disorders including hypertension, arterial spasm, and myocardial infarction. We determined whether basal endothelial nitric oxide release is reduced in otherwise healthy overweight and obese adult humans.RESEARCH METHODS AND PROCEDURES: Seventy sedentary adults were studied: 32 normal weight (BMI/m(2)), 24 overweight (BMI \u3e or = 25 \u3c 30 kg/m(2)), and 14 obese (BMI \u3e or = 30 kg/m(2)). Forearm blood flow (FBF) responses to intra-arterial infusions of N(g)-monomethyl-L-arginine (5 mg/min), a nitric oxide synthase inhibitor, were used as an index of basal nitric oxide release.RESULTS: N(g)-monomethyl-L-arginine elicited significant reductions in FBF in the normal weight (from 4.1 +/- 0.2 to 2.7 +/- 0.2 mL/100 mL tissue/min), overweight (4.1 +/- 0.1 to 2.8 +/- 0.2 mL/100 mL tissue/min), and obese (3.9 +/- 0.3 to 2.7 +/- 0.2 mL/100 mL tissue/min) subjects. Importantly, the magnitude of reduction in FBF (approximately 30%) was similar among the groups.DISCUSSION: These results indicate that the capacity of the endothelium to release nitric oxide under basal conditions is not compromised in overweight and obese adults

    A Community-based Exercise Intervention Transitions Metabolically Abnormal Obese Adults to a Metabolically Healthy Obese Phenotype

    Get PDF
    Background: Lower habitual physical activity and poor cardiorespiratory fitness are common features of the metabolically abnormal obese (MAO) phenotype that contribute to increased cardiovascular disease risk. The aims of the present study were to determine 1) whether community-based exercise training transitions MAO adults to metabolically healthy, and 2) whether the odds of transition to metabolically healthy were larger for obese individuals who performed higher volumes of exercise and/or experienced greater increases in fitness. Methods and results: Metabolic syndrome components were measured in 332 adults (190 women, 142 men) before and after a supervised 14-week community-based exercise program designed to reduce cardiometabolic risk factors. Obese (body mass index ≥30 kgm2) adults with two to four metabolic syndrome components were classified as MAO, whereas those with no or one component were classified as metabolically healthy but obese (MHO). After community exercise, 27/68 (40%) MAO individuals (

    Prehypertension and Endothelial Progenitor Cell Function.

    Get PDF
    Prehypertension is associated with significant damage to the coronary vasculature and increased rates of adverse cardiovascular events. Circulating endothelial progenitor cells (EPCs) are critical to vascular repair and the formation of new blood vessels. We tested the hypothesis that prehypertension is associated with EPC dysfunction. Peripheral blood samples were collected from 83 middle-aged and older adults (51 M/32 F): 40 normotensive (age 53±2 yr; BP 111/74±1/1 mmHg) and 43 prehypertensive (54±2; 128/77±1/1 mmHg). EPCs were isolated from peripheral blood and EPC colony-forming capacity (colony-forming unit assay), migratory activity (Boyden chamber) and apoptotic susceptibility (active caspase-3 concentrations) were determined. There were no significant differences in either the number of EPC CFUs (10±2 vs. 9±1), EPC migration (1165±82 vs. 1120±84 fluorescent units), or active intracellular caspase-3 concentrations (2.7±0.3 vs. 2.3±0.2 ng/mL) between the normotensive and prehypertensive groups. When groups were stratified into low prehypertension (n=27; systolic BP: 120–129 mmHg) and high prehypertension (n=16; 130–139 mmHg), it was found that EPCs from the high prehypertensive group produced fewer (~65%, P\u3c0.05) CFUs compared with the low prehypertensive (4±1 vs. 12±2) and normotensive adults. In conclusion, EPC colonyforming capacity is impaired only in prehypertensive adults with systolic BP greater than 130 mmHg. Prehypertension is not associated with migratory dysfunction or enhanced apoptosis of EPCs
    corecore