15 research outputs found

    Helix 8 of the viral chemokine receptor ORF74 directs chemokine binding

    Get PDF
    The constitutively active G-protein-coupled receptor and viral oncogene ORF74, encoded by Kaposi sarcoma-associated herpesvirus (human herpesvirus 8), binds a broad range of chemokines, including CXCL1 (agonist), CXCL8 (neutral ligand), and CXCL10 (inverse agonist). Although chemokines interact with the extracellular N terminus and loops of the receptor, we demonstrate that helix 8 (Hx8) in the intracellular carboxyl tail (C-tail) of ORF74 directs chemokine binding. Partial deletion of the C-tail resulted in a phenotype with reduced constitutive activity but intact regulation by ligands. Complete deletion of the C-tail, including Hx8, resulted in an inactive phenotype that lacks CXCL8 binding sites and has an increased number of binding sites for CXCL10. Similar effects were obtained with the single R7.6

    Transitions in Structure in Oil-in-Water Emulsions As Studied by Diffusing Wave Spectroscopy

    No full text
    Transitions in structure of sodium caseinate stabilized emulsions were studied using conventional rheometry as well as diffusing wave spectroscopy (DWS). Structural differences were induced by different amounts of stabilizer, and transitions in structure were induced by acidification. Special attention was given to the sol-gel transition. In this study the criterion of the sol-gel transition being frequency independent was verified for emulsions using DWS. It was shown that this sol-gel transition did not correspond to the so-called ergodic-nonergodic transition. Differences, as a function of the pH, were found for emulsions containing different amounts of stabilizer. The emulsion droplets in an emulsion without extra stabilizer formed a continuous network upon acidification, while the droplets in emulsions with an excess of stabilizer formed a network of oil droplets at neutral pH. Upon acidification of the latter one, the initial network of oil droplets fell apart, and eventually a network of sodium caseinate, in which the oil droplets were embedded, was formed. This caused the appearance of two sol-gel transitions. The breaking of the initial network as well as the network formation of sodium caseinate in time was observed by DWS

    Transitions in Structure in Oil-in-Water Emulsions As Studied by Diffusing Wave Spectroscopy

    No full text
    Transitions in structure of sodium caseinate stabilized emulsions were studied using conventional rheometry as well as diffusing wave spectroscopy (DWS). Structural differences were induced by different amounts of stabilizer, and transitions in structure were induced by acidification. Special attention was given to the sol-gel transition. In this study the criterion of the sol-gel transition being frequency independent was verified for emulsions using DWS. It was shown that this sol-gel transition did not correspond to the so-called ergodic-nonergodic transition. Differences, as a function of the pH, were found for emulsions containing different amounts of stabilizer. The emulsion droplets in an emulsion without extra stabilizer formed a continuous network upon acidification, while the droplets in emulsions with an excess of stabilizer formed a network of oil droplets at neutral pH. Upon acidification of the latter one, the initial network of oil droplets fell apart, and eventually a network of sodium caseinate, in which the oil droplets were embedded, was formed. This caused the appearance of two sol-gel transitions. The breaking of the initial network as well as the network formation of sodium caseinate in time was observed by DWS

    Hybrid Conjugated Organic Oligomers Consisting of Oligodiacetylene and Thiophene Units: Synthesis and Optical Properties

    No full text
    Novel and highly soluble hybrid conjugated organic oligomers consisting of oligodiacetylene and thiophene units have been synthesized in high purity through iterative and divergent approaches based on a sequence of Sonogashira reactions. The series of thiophene-containing oligodiacetylenes (ThODAs) and homocoupled ThODAs (HThODAs) show - both in solution and in the solid state - a strong optical absorption, which is progressively red shifted with increasing chain length. The linear correlation of the absorption maximum (Amax) with the inverse of conjugation length (CL=number of double and triple bonds) shows that the effective conjugation length of this system is extended up to at least CL=20. Furthermore, absorption measurements of dropcast thin films display not only a bathochromic shift of the absorption maxima but also a higher wavelength absorption, which is attributed to increased - interactions. The wavelength of the maximum fluorescence emission (Emax) also increases with CL, and emission is maximal for oligomers with CL=7-12 (fluorescence quantum yield F=0.2). Both longer and shorter oligomers display marginal emission. The calculated Stokes shifts of these planar materials are relatively large (0.4 eV) for all oligomers, and likely due to excitation to the S2 state, thus suggesting that the presence of enyne moieties dominates the ordering of the lowest excited states. The fluorescence lifetimes (F) are short (F,max=1 ns) and closely follow the tendency obtained for the fluorescence quantum yield. The anisotropy lifetimes show a near-linear increase with CL, in line with highly rigid oligomer

    The extended law of corresponding states when attractions meet repulsions

    No full text
    Short-range attractive colloids show well-defined phase behaviour in the absence of repulsions, and highly intriguing equilibrium gelation in the presence of long-range repulsions. We present the state diagram of short-range attractive colloids with repulsions that range from fully screened to intermediately ranged, i.e. longer-ranged than the attractions, but shorter ranged than the colloid size. We demonstrate that although the macroscopic phase behaviour does not change perceptibly, there is a dramatic increase of inhomogeneities once the repulsions become longer-ranged than the attractions. The interaction potentials are characterized with small angle neutron scattering, and used to renormalize the state diagram with the minimum in the interaction potential, min[U(r)], and with the reduced second virial coefficient, B2∗. We find that the extended law of corresponding states captures the onset of phase separation for shorter ranged repulsions, but fails for longer ranged repulsions. Instead, for a given model of U(r), the transition from visually homogeneous fluid to phase separation and/or gelation can be rescaled with min[U(r)] over the full range of repulsions. Finally, we suggest a generic state diagram to describe the effect of repulsions on short-range attractive systems

    Hybrid Conjugated Organic Oligomers Consisting of Oligodiacetylene and Thiophene Units: Synthesis and Optical Properties

    No full text
    Novel and highly soluble hybrid conjugated organic oligomers consisting of oligodiacetylene and thiophene units have been synthesized in high purity through iterative and divergent approaches based on a sequence of Sonogashira reactions. The series of thiophene-containing oligodiacetylenes (ThODAs) and homocoupled ThODAs (HThODAs) show - both in solution and in the solid state - a strong optical absorption, which is progressively red shifted with increasing chain length. The linear correlation of the absorption maximum (Amax) with the inverse of conjugation length (CL=number of double and triple bonds) shows that the effective conjugation length of this system is extended up to at least CL=20. Furthermore, absorption measurements of dropcast thin films display not only a bathochromic shift of the absorption maxima but also a higher wavelength absorption, which is attributed to increased - interactions. The wavelength of the maximum fluorescence emission (Emax) also increases with CL, and emission is maximal for oligomers with CL=7-12 (fluorescence quantum yield F=0.2). Both longer and shorter oligomers display marginal emission. The calculated Stokes shifts of these planar materials are relatively large (0.4 eV) for all oligomers, and likely due to excitation to the S2 state, thus suggesting that the presence of enyne moieties dominates the ordering of the lowest excited states. The fluorescence lifetimes (F) are short (F,max=1 ns) and closely follow the tendency obtained for the fluorescence quantum yield. The anisotropy lifetimes show a near-linear increase with CL, in line with highly rigid oligomer

    The extended law of corresponding states when attractions meet repulsions

    No full text
    Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.RST/Neutron and Positron Methods in Material

    Helix 8 of the viral chemokine receptor ORF74 directs chemokine binding

    No full text
    The constitutively active G-protein-coupled receptor and viral oncogene ORF74, encoded by Kaposi sarcoma-associated herpesvirus (human herpesvirus 8), binds a broad range of chemokines, including CXCL1 (agonist), CXCL8 (neutral ligand), and CXCL10 (inverse agonist). Although chemokines interact with the extracellular N terminus and loops of the receptor, we demonstrate that helix 8 (Hx8) in the intracellular carboxyl tail (C-tail) of ORF74 directs chemokine binding. Partial deletion of the C-tail resulted in a phenotype with reduced constitutive activity but intact regulation by ligands. Complete deletion of the C-tail, including Hx8, resulted in an inactive phenotype that lacks CXCL8 binding sites and has an increased number of binding sites for CXCL10. Similar effects were obtained with the single R7.61322W or Q7.62 323P mutations in Hx8. We propose that the conserved charged or polar side chain at position 7.61 has a specific role in stabilizing the end of transmembrane domain 7 (TM7). Disruption of Hx8 by deletion or mutation distorts an H-bonding network, involving highly conserved amino acids within TM2, TM7, and Hx8, that is crucial for positioning of the TM domains, coupling to Gαq, and CXCL8 binding. Thus, Hx8 appears to exert a key role in receptor stabilization through the conserved residue R7.61, directing the ligand binding profile of ORF74 and likely also that of other class A G-protein-coupled receptors
    corecore