942 research outputs found

    Photometric Observations of the Eta Carinae 2009.0 Spectroscopic Event

    Full text link
    We have observed Eta Carinae over 34 nights between 4th January 2009 and 27th March 2009 covering the estimated timeframe for a predicted spectroscopic event related to a suspected binary system concealed within the homunculus nebula. A photometric minimum feature was confirmed to be periodic and comparison to a previous event indicated that the period to within our error at 2022.6 +/-1.0 d. Using the E-region standard star system, the apparent V magnitudes determined for the local comparison stars were HD303308 8.14+/-0.02, HD 93205 7.77 +/-0.03 and HD93162 8.22 +/-0.05. The latter star was found to be dimmer than previously reported.Comment: 5 pages,4 figures, 1 tabl

    Accretion onto the Companion of Eta Carinae During the Spectroscopic Event: III. the He II 4686 Line

    Get PDF
    We continue to explore the accretion model of the massive binary system eta Carinae by studying the anomalously high He II 4686 line. The line appears just before periastron and disappears immediately thereafter. Based on the He II 4686 line emission from O-stars and their modeling in the literature, we postulate that the He II 4686 line comes from the acceleration zone of the secondary stellar wind. We attribute the large increase in the line intensity to a slight increase in the density of the secondary stellar wind in its acceleration zone. The increase in density could be due to the ionization and subsequent deceleration of the wind by the enhanced X-ray emission arising from the shocked secondary wind further downstream or to accretion of the primary stellar wind. Accretion around the secondary equatorial plane gives rise to collimation of the secondary wind, which increases its density, hence enhancing the He II 4686 emission line. In contrast with previous explanations, the presently proposed model does not require a prohibitively high X-ray flux to directly photoionize the He.Comment: ApJ, in pres

    Accretion onto the Companion of Eta Carinae During the Spectroscopic Event. IV. the Disappearance of Highly Ionized Lines

    Get PDF
    We show that the rapid and large decrease in the intensity of high-ionization emission lines from the Eta Carinae massive binary system can be explained by the accretion model. These emission lines are emitted by material in the nebula around the binary system that is being ionized by radiation from the hot secondary star. The emission lines suffer three months long deep fading every 5.54 year, assumed to be the orbital period of the binary system. In the accretion model, for ~70 day the less massive secondary star is accreting mass from the primary wind instead of blowing its fast wind. The accretion event has two effects that substantially reduce the high-energy ionizing radiation flux from the secondary star. (1) The accreted mass absorbs a larger fraction of the ionizing flux. (2) The accreted mass forms a temporarily blanked around the secondary star that increases its effective radius, hence lowering its effective temperature and the flux of high energy photons. This explanation is compatible with the fading of the emission lines at the same time the X-ray is declining to its minimum, and with the fading being less pronounced in the polar directions.Comment: ApJ, in pres

    On the photometric variability of blue supergiants in NGC 300 and its impact on the Flux-weighted Gravity-Luminosity Relationship

    Full text link
    We present a study of the photometric variability of spectroscopically confirmed supergiants in NGC 300, comprising 28 epochs extending over a period of five months. We find 15 clearly photometrically variable blue supergiants in a sample of nearly 70 such stars, showing maximum light amplitudes ranging from 0.08 to 0.23 magnitudes in the V band, and one variable red supergiant. We show their light curves, and determine semi-periods for two A2 Ia stars. Assuming that the observed changes correspond to similar variations in the bolometric luminosity, we test for the influence of this variability on the Flux-weighted Gravity--Luminosity Relationship and find a negligible effect, showing that the calibration of this relationship, which has the potential to measure extragalactic distances at the Cepheid accuracy level, is not affected by the stellar photometric variability in any significant way.Comment: 9 pages, 3 figures, 3 tables. Accepted for publication in the Astrophysical Journa

    The Purple Haze of Eta Carinae: Binary-Induced Variability?

    Full text link
    Asymmetric variability in ultraviolet images of the Homunculus obtained with the Advanced Camera for Surveys/High Resolution Camera on the Hubble Space Telescope suggests that Eta Carinae is indeed a binary system. Images obtained before, during, and after the recent ``spectroscopic event'' in 2003.5 show alternating patterns of bright spots and shadows on opposite sides of the star before and after the event, providing a strong geometric argument for an azimuthally-evolving, asymmetric UV radiation field as one might predict in some binary models. The simplest interpretation of these UV images, where excess UV escapes from the secondary star in the direction away from the primary, places the major axis of the eccentric orbit roughly perpendicular to our line of sight, sharing the same equatorial plane as the Homunculus, and with apastron for the hot secondary star oriented toward the southwest of the primary. However, other orbital orientations may be allowed with more complicated geometries. Selective UV illumination of the wind and ejecta may be partly responsible for line profile variations seen in spectra. The brightness asymmetries cannot be explained plausibly with delays due to light travel time alone, so a single-star model would require a seriously asymmetric shell ejection.Comment: 8 pages, fig 1 in color, accepted by ApJ Letter

    A Spitzer Space Telescope far-infrared spectral atlas of compact sources in the Magellanic Clouds. I. The Large Magellanic Cloud

    Full text link
    [abridged] We present 52-93 micron spectra obtained with Spitzer in the MIPS-SED mode, of a representative sample of luminous compact far-IR sources in the LMC. These include carbon stars, OH/IR AGB stars, post-AGB objects and PNe, RCrB-type star HV2671, OH/IR red supergiants WOHG064 and IRAS05280-6910, B[e] stars IRAS04530-6916, R66 and R126, Wolf-Rayet star Brey3a, Luminous Blue Variable R71, supernova remnant N49, a large number of young stellar objects, compact HII regions and molecular cores, and a background galaxy (z~0.175). We use the spectra to constrain the presence and temperature of cold dust and the excitation conditions and shocks within the neutral and ionized gas, in the circumstellar environments and interfaces with the surrounding ISM. Evolved stars, including LBV R71, lack cold dust except in some cases where we argue that this is swept-up ISM. This leads to an estimate of the duration of the prolific dust-producing phase ("superwind") of several thousand years for both RSGs and massive AGB stars, with a similar fractional mass loss experienced despite the different masses. We tentatively detect line emission from neutral oxygen in the extreme RSG WOHG064, with implications for the wind driving. In N49, the shock between the supernova ejecta and ISM is revealed by its strong [OI] 63-micron emission and possibly water vapour; we estimate that 0.2 Msun of ISM dust was swept up. Some of the compact HII regions display pronounced [OIII] 88-micron emission. The efficiency of photo-electric heating in the interfaces of ionized gas and molecular clouds is estimated at 0.1-0.3%. We confirm earlier indications of a low nitrogen content in the LMC. Evidence for solid state emission features is found in both young and evolved object; some of the YSOs are found to contain crystalline water ice.Comment: Accepted for publication in The Astronomical Journal. This paper accompanies the Summer 2009 SAGE-Spec release of 48 MIPS-SED spectra, but uses improved spectrum extraction. (Fig. 2 reduced resolution because of arXiv limit.

    Instability of LBV-stars against radial oscillations

    Full text link
    In this study we consider the nonlinear radial oscillations exciting in LBV--stars with effective temperatures 1.5e4 K <= Teff <= 3e4 K, bolometric luminosities 1.2e6 L_odot <= L <= 1.9e6 L_odot and masses 35.7 M_odot <= M <= 49.1 M_odot. Hydrodynamic computations were carried out with initial conditions obtained from evolutionary sequences of population I stars (X=0.7, Z=0.02) with initial masses from 70M_odot to 90 M_odot. All hydrodynamical models show instability against radial oscillations with amplitude growth time comparable with dynamical time scale of the star. Radial oscillations exist in the form of nonlinear running waves propagating from the boundary of the compact core to the upper boundary of the hydrodynamical model. The velocity amplitude of outer layers is of several hundreds of km/s while the bolometric light amplitude does not exceed 0.2 mag. Stellar oscillations are not driven by the kappa-mechanism and are due to the instability of the gas with adiabatic exponent close to the critical value Gamma_1 = 4/3 due to the large contribution of radiation in the total pressure. The range of the light variation periods (6 day <= P <= 31 day) of hydrodynamical models agrees with periods of microvariability observed in LBV--stars.Comment: 14 pages, 5 figures, submitted to Astronomy Letter

    I Zw 18 revisited with HST/ACS and Cepheids: New Distance and Age

    Full text link
    We present new V and I-band HST/ACS photometry of I Zw 18, the most metal-poor blue compact dwarf (BCD) galaxy in the nearby universe. It has been argued in the past that I Zw 18 is a very young system that started forming stars only 1 Gyr) red giant branch (RGB) stars may also exist. Our new data, once combined with archival HST/ACS data, provide a deep and uncontaminated optical color-magnitude diagram (CMD) that now strongly indicates an RGB. The RGB tip (TRGB) magnitude yields a distance modulus (m-M)_0 = 31.30 +/- 0.17, i.e., D = 18.2 +/- 1.5 Mpc. The time-series nature of our observations allows us to also detect and characterize for the first time three classical Cepheids in I~Zw~18. The time-averaged Cepheid and magnitudes are compared to the VI reddening-free Wesenheit relation predicted from new non-linear pulsation models specifically calculated at the metallicity of I Zw 18. For the one bona-fide classical Cepheid with a period of 8.63 days this implies a distance modulus (m-M)_0 = 31.42 +/- 0.26. The other two Cepheids have unusually long periods (125.0 and 129.8 d) but are consistent with this distance. The coherent picture that emerges is that I Zw 18 is older and farther away than previously believed. This rules out the possibility that I Zw 18 is a truly primordial galaxy formed recently (z < 0.1) in the local universe.Comment: 12 pages, 3 figures, submitted to ApJ
    corecore