153 research outputs found
Monte Carlo simulations of membrane signal transduction events: Effect of receptor blockers on G-protein activation
Cells have evolved elaborate strategies for sensing, responding to, and interacting with their environment. In many systems, interaction of cell surface receptors with extracellular ligand can activate cellular signal transduction pathways leading to G-protein activation and calcium mobilization. In BC 3 H1 smooth muscle-like cells, we find that the speed of calcium mobilization as well as the fraction of cells which mobilize calcium following phenylephrine stimulation is dependent upon receptor occupation. To determine whether receptor inactivation affects calcium mobilization, we use the receptor antagonist prazosin to block a fraction of cell surface receptors prior to phenylephrine stimulation. For cases of equal receptor occupation by agonist, cells with inactivated or blocked receptors show diminished calcium mobilization following phenylephrine stimulation as compared to cells without inactivated receptors. Ligand/receptor binding and two-dimensional diffusion of receptors and G-proteins in the cell membrane are studied using a Monte Carlo model. The model is used to determine if receptor inactivation affects G-protein activation and thus the following signaling events for cases of equal equilibrium receptor occupation by agonist. The model predicts that receptor inactivation by antagonist binding results in lower G-protein activation not only by reducing the number of receptors able to bind agonist but also by restricting the movement of agonist among free receptors. The latter process is important to increasing the access of bound receptors to G-proteins.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43997/1/10439_2006_Article_BF00000009.pd
Simulation-based cheminformatic analysis of organelle-targeted molecules: lysosomotropic monobasic amines
Cell-based molecular transport simulations are being developed to facilitate exploratory cheminformatic analysis of virtual libraries of small drug-like molecules. For this purpose, mathematical models of single cells are built from equations capturing the transport of small molecules across membranes. In turn, physicochemical properties of small molecules can be used as input to simulate intracellular drug distribution, through time. Here, with mathematical equations and biological parameters adjusted so as to mimic a leukocyte in the blood, simulations were performed to analyze steady state, relative accumulation of small molecules in lysosomes, mitochondria, and cytosol of this target cell, in the presence of a homogenous extracellular drug concentration. Similarly, with equations and parameters set to mimic an intestinal epithelial cell, simulations were also performed to analyze steady state, relative distribution and transcellular permeability in this non-target cell, in the presence of an apical-to-basolateral concentration gradient. With a test set of ninety-nine monobasic amines gathered from the scientific literature, simulation results helped analyze relationships between the chemical diversity of these molecules and their intracellular distributions
Regulation of the V-ATPase along the Endocytic Pathway Occurs through Reversible Subunit Association and Membrane Localization
The lumen of endosomal organelles becomes increasingly acidic when going from the cell surface to lysosomes. Luminal pH thereby regulates important processes such as the release of internalized ligands from their receptor or the activation of lysosomal enzymes. The main player in endosomal acidification is the vacuolar ATPase (V-ATPase), a multi-subunit transmembrane complex that pumps protons from the cytoplasm to the lumen of organelles, or to the outside of the cell. The active V-ATPase is composed of two multi-subunit domains, the transmembrane V0 and the cytoplasmic V1. Here we found that the ratio of membrane associated V1/Vo varies along the endocytic pathway, the relative abundance of V1 being higher on late endosomes than on early endosomes, providing an explanation for the higher acidity of late endosomes. We also found that all membrane-bound V-ATPase subunits were associated with detergent resistant membranes (DRM) isolated from late endosomes, raising the possibility that association with lipid-raft like domains also plays a role in regulating the activity of the proton pump. In support of this, we found that treatment of cells with U18666A, a drug that leads to the accumulation of cholesterol in late endosomes, affected acidification of late endosome. Altogether our findings indicate that the activity of the vATPase in the endocytic pathway is regulated both by reversible association/dissociation and the interaction with specific lipid environments
Phylogenetic Analysis of Pelecaniformes (Aves) Based on Osteological Data: Implications for Waterbird Phylogeny and Fossil Calibration Studies
) were also assessed. The antiquity of these taxa and their purported status as stem members of extant families makes them valuable for studies of higher-level avian diversification. (sister taxon to Phalacrocoracidae). These relationships are invariant when ‘backbone’ constraints based on recent avian phylogenies are imposed.Relationships of extant pelecaniforms inferred from morphology are more congruent with molecular phylogenies than previously assumed, though notable conflicts remain. The phylogenetic position of the Plotopteridae implies that wing-propelled diving evolved independently in plotopterids and penguins, representing a remarkable case of convergent evolution. Despite robust support for the placement of fossil taxa representing key calibration points, the successive outgroup relationships of several “stem fossil + crown family” clades are variable and poorly supported across recent studies of avian phylogeny. Thus, the impact these fossils have on inferred patterns of temporal diversification depends heavily on the resolution of deep nodes in avian phylogeny
Developmental malformation of the corpus callosum: a review of typical callosal development and examples of developmental disorders with callosal involvement
This review provides an overview of the involvement of the corpus callosum (CC) in a variety of developmental disorders that are currently defined exclusively by genetics, developmental insult, and/or behavior. I begin with a general review of CC development, connectivity, and function, followed by discussion of the research methods typically utilized to study the callosum. The bulk of the review concentrates on specific developmental disorders, beginning with agenesis of the corpus callosum (AgCC)—the only condition diagnosed exclusively by callosal anatomy. This is followed by a review of several genetic disorders that commonly result in social impairments and/or psychopathology similar to AgCC (neurofibromatosis-1, Turner syndrome, 22q11.2 deletion syndrome, Williams yndrome, and fragile X) and two forms of prenatal injury (premature birth, fetal alcohol syndrome) known to impact callosal development. Finally, I examine callosal involvement in several common developmental disorders defined exclusively by behavioral patterns (developmental language delay, dyslexia, attention-deficit hyperactive disorder, autism spectrum disorders, and Tourette syndrome)
ISSN exercise & sport nutrition review: research & recommendations
Sports nutrition is a constantly evolving field with hundreds of research papers published annually. For this reason, keeping up to date with the literature is often difficult. This paper is a five year update of the sports nutrition review article published as the lead paper to launch the JISSN in 2004 and presents a well-referenced overview of the current state of the science related to how to optimize training and athletic performance through nutrition. More specifically, this paper provides an overview of: 1.) The definitional category of ergogenic aids and dietary supplements; 2.) How dietary supplements are legally regulated; 3.) How to evaluate the scientific merit of nutritional supplements; 4.) General nutritional strategies to optimize performance and enhance recovery; and, 5.) An overview of our current understanding of the ergogenic value of nutrition and dietary supplementation in regards to weight gain, weight loss, and performance enhancement. Our hope is that ISSN members and individuals interested in sports nutrition find this review useful in their daily practice and consultation with their clients
Prostaglandin- and theophylline-induced Cl secretion in rat distal colon is inhibited by microtubule inhibitors
The aim of the present study was to examine the possible role of microtubules in chloride secretion by distal rat colon stimulated by prostaglandin (PGE 2 ) and theophylline. Distal colonic tissue from male rats was mounted in Ussing chambers, and short-circuit current (I sc ) was measured to assess chloride secretion. Three microtubule inhibitors, colchicine, nocodazole, and taxol, all inhibited the stimulated I sc and reduced the 60-min integrated secretory response to PGE 2 and theophylline (▪I sc dt) by 39–52%, whereas the inactive colchicine analog lumicolchicine did not. Atropine and tetrodotoxin had no effect on stimulated chloride secretion. To confirm the source of I sc , unidirectional 22 Na + and 36 Cl − fluxes were measured in tissues exposed to lumicolchicine (control) or colchicine. Control tissues absorbed both chloride [5.0 (1.1–8.6) (median and 95% confidence interval) μeq/cm 2 /hr] and sodium [2.8 (0.9–7.2) μeq/cm 2 /hr], and this net absorption was reduced by 96% and 79%, respectively, by treatment with PGE 2 and theophylline due to an increase in serosal-to-mucosal chloride and sodium movement. Colchicine-treated tissues exhibited similar net basal chloride and sodium absorption that was reduced by 71% and 75%, respectively, by treatment with PGE 2 and theophylline. Thus the PGE 2 - and theophylline-induced increase in chloride secretion was significantly reduced by colchicine ( P <0.05 by Wilcoxon rank-sum test), whereas colchicine had no effect on PGE 2 - and theophylline-induced changes in sodium fluxes. Furthermore, the colchinine-related changes in stimulated chloride secretion were numerically similar to colchicine-related changes in stimulated I sc . These findings indicate that microtubules are required for normal PGE 2 - and theophylline-induced chloride secretion in distal rat colon and suggest that induced chloride secretion may involve vesicular insertion of ion transporters into the plasma membrane or other microtubule-dependent regulatory processes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44414/1/10620_2005_Article_BF01299864.pd
- …