The aim of the present study was to examine the possible role of microtubules in chloride secretion by distal rat colon stimulated by prostaglandin (PGE 2 ) and theophylline. Distal colonic tissue from male rats was mounted in Ussing chambers, and short-circuit current (I sc ) was measured to assess chloride secretion. Three microtubule inhibitors, colchicine, nocodazole, and taxol, all inhibited the stimulated I sc and reduced the 60-min integrated secretory response to PGE 2 and theophylline (▪I sc dt) by 39–52%, whereas the inactive colchicine analog lumicolchicine did not. Atropine and tetrodotoxin had no effect on stimulated chloride secretion. To confirm the source of I sc , unidirectional 22 Na + and 36 Cl − fluxes were measured in tissues exposed to lumicolchicine (control) or colchicine. Control tissues absorbed both chloride [5.0 (1.1–8.6) (median and 95% confidence interval) μeq/cm 2 /hr] and sodium [2.8 (0.9–7.2) μeq/cm 2 /hr], and this net absorption was reduced by 96% and 79%, respectively, by treatment with PGE 2 and theophylline due to an increase in serosal-to-mucosal chloride and sodium movement. Colchicine-treated tissues exhibited similar net basal chloride and sodium absorption that was reduced by 71% and 75%, respectively, by treatment with PGE 2 and theophylline. Thus the PGE 2 - and theophylline-induced increase in chloride secretion was significantly reduced by colchicine ( P <0.05 by Wilcoxon rank-sum test), whereas colchicine had no effect on PGE 2 - and theophylline-induced changes in sodium fluxes. Furthermore, the colchinine-related changes in stimulated chloride secretion were numerically similar to colchicine-related changes in stimulated I sc . These findings indicate that microtubules are required for normal PGE 2 - and theophylline-induced chloride secretion in distal rat colon and suggest that induced chloride secretion may involve vesicular insertion of ion transporters into the plasma membrane or other microtubule-dependent regulatory processes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44414/1/10620_2005_Article_BF01299864.pd