351 research outputs found

    Quantified Morphology of HI Disks in the Universe

    Get PDF
    he upcoming new perspective of the high redshift Universe in the 21 cm line of atomic hydrogen opens possibilities to explore topics of spiral disk evolution, hitherto reserved for the optical regime. The growth of spiral gas disks over Cosmic time can be explored with the new generation of radio telescopes, notably the SKA, and its precursors, as accurately as with the Hubble Space Telescope for stellar disks. Since the atomic hydrogen gas is the building block of these disks, it should trace their formation accurately. Morphology of HI disks can now equally be quantified over Cosmic time. In studies of HST deep fields, the optical or UV morphology of high-redshift galaxy disks have been characterized using a few quantities: concentration (C), asymmetry (A), smoothness (S), second-order-moment (M20), the GINI coefficient (G), and Ellipticity (E). We have applied these parameters across wavelengths and compared them to the HI morphology over the THINGS sample. NGC 3184, an unperturbed disk, and NGC 5194, the canonical 3:1 interaction, serve as examples for quantified morphology. We find that morphology parameters determined in HI are as good or better a tracer of interaction compared to those in any other wavelength, notably in Asymmetry, Gini and M20. This opens the possibility of using them in the parameterization pipeline for SKA precursor catalogues to select interacting or harassed galaxies from their HI morphology. Asymmetry, Gini and M20 may be redefined for use on data-cubes rather than HI column density image.Comment: 6 pages, 3 figures, proceeding of the conference "Panoramic Radio Astronomy: Wide-field 1-2 GHz research on galaxy evolution", June 02 - 05 2009, Groningen, update after small edit

    Quantified HI Morphology II : Lopsidedness and Interaction in WHISP Column Density Maps

    Get PDF
    Lopsidedness of the gaseous disk of spiral galaxies is a common phenomenon in disk morphology, profile and kinematics. Simultaneously, the asymmetry of a galaxy's stellar disk, in combination with other morphological parameters, has seen extensive use as an indication of recent merger or interaction in galaxy samples. Quantified morphology of stellar spiral disks is one avenue to determine the merger rate over much of the age of the Universe. In this paper, we measure the quantitative morphology parameters for the HI column density maps from the Westerbork observations of neutral Hydrogen in Irregular and SPiral galaxies (WHISP). These are Concentration, Asymmetry, Smoothness, Gini, M20, and one addition of our own, the Gini parameter of the second order moment (GM). Our aim is to determine if lopsided or interacting disks can be identified with these parameters. Our sample of 141 HI maps have all previous classifications on their lopsidedness and interaction. We find that the Asymmetry, M20, and our new GM parameter correlate only weakly with the previous morphological lopsidedness quantification. These three parameters may be used to compute a probability that an HI disk is morphologically lopsided but not unequivocally to determine it. However, we do find that that the question whether or not an HI disk is interacting can be settled well using morphological parameters. Parameter cuts from the literature do not translate from ultraviolet to HI directly but new selection criteria using combinations of Asymmetry and M20 or Concentration and M20, work very well. We suggest that future all-sky HI surveys may use these parameters of the column density maps to determine the merger fraction and hence rate in the local Universe with a high degree of accuracy.Comment: 12 pages, 5 figures, 1 table, accepted by MNRAS, appendix not include

    Test engineering education in Europe: the EuNICE-Test project

    Get PDF
    The paper deals with a European experience of education in industrial test of ICs and SoCs using remote testing facilities. The project addresses the problem of the shortage in microelectronics engineers aware with the new challenge of testing mixed-signal SoCs far multimedia/telecom market. It aims at providing test training facilities at a European scale in both initial and continuing education contexts. This is done by allowing the academic and industrial partners of the consortium to train engineers using the common test resources center (CRTC) hosted by LIRMM (Laboratoire d'Informatique, de Robotique et de Microelectronique de Montpellier, France). CRTC test tools include up-to-date/high-tech testers that are fully representative of real industrial testers as used on production testfloors. At the end of the project, it is aimed at reaching a cruising speed of about 16 trainees per year per center. Each trainee will have attend at least one one-week training using the remote test facilities of CRTC

    Quantified H i morphology – IV. The merger fraction and rate in WHISP.

    Get PDF
    The morphology of the atomic hydrogen (H I) disc of a spiral galaxy is the first component to be disturbed by a gravitational interaction such as a merger between two galaxies. We use a simple parametrization of the morphology of H I column density maps of the Westerbork observations of neutral Hydrogen in Irregular and SPiral galaxies (WHISP) project to select those galaxies that are likely undergoing a significant interaction. Merging galaxies occupy a particular part of parameter space defined by Asymmetry (A), the relative contribution of the 20 per cent brightest pixels to the second-order moment of the column density map (M20) and the distribution of the second-order moment over all the pixels (GM). Based on their H I morphology, we find that 13 per cent of the WHISP galaxies are in an interaction (Concentration–M20) and only 7 per cent are based on close companions in the data cube. This apparent discrepancy can be attributed to the difference in visibility time-scales: mergers are identifiable as close pairs for 0.5 Gyr but are identifiable for ∼1 Gyr by their disturbed H I morphology. Expressed as volume merger rates, the two estimates agree very well: 7 and 6.8 × 10−3 mergers Gyr−1 Mpc−3 for paired and morphologically disturbed H I discs, respectively. The consistency of our merger fractions with those published for bigger surveys such as the Sloan Digital Sky Survey shows that H I morphology can be a very viable way to identify mergers in large H I surveys. The relatively high value for the volume merger rate may be a bias in the selection or WHISP volume. The expected abundance in high-resolution H I data by the planned South African Karoo Array Telescope (MeerKAT), Australian SKA Pathfinder (ASKAP) and Westerbork Synthesis Radio Telescope/APERture Tile In Focus instrument (WSRT/APERTIF) radio observatories will reveal the importance of mergers in the local Universe and, with the advent of the Square Kilometer Array (SKA), over cosmic times

    Quantified HI Morphology III: Merger Visibility Times from HI in Galaxy Simulations

    Get PDF
    Major mergers of disk galaxies are thought to be a substantial driver in galaxy evolution. To trace the fraction and the rate galaxies are in mergers over cosmic times, several observational techniques, including morphological selection criteria, have been developed over the last decade. We apply this morphological selection of mergers to 21 cm radio emission line (HI) column density images of spiral galaxies in nearby surveys. In this paper, we investigate how long a 1:1 merger is visible in HI from N-body simulations. We evaluate the merger visibility times for selection criteria based on four parameters: Concentration, Asymmetry, M20, and the Gini parameter of second order moment of the flux distribution (GM). Of three selection criteria used in the literature, one based on Concentration and M20 works well for the HI perspective with a merger time scale of 0.4 Gyr. Of the three selection criteria defined in our previous paper, the GM performs well and cleanly selects mergers for 0.69 Gyr. The other two criteria (A-M20 and C-M20), select isolated disks as well, but perform best for face-on, gas-rich disks (T(merger) ~ 1 Gyr). The different visibility scales can be combined with the selected fractions of galaxies in any large HI survey to obtain merger rates in the nearby Universe. All-sky surveys such as WALLABY with ASKAP and the Medium Deep Survey with the APETIF instrument on Westerbork are set to revolutionize our perspective on neutral hydrogen and will provide an accurate measure of the merger fraction and rate of the present epoch.Comment: 12 pages, 6 figures, 4 tables, accepted by MNRAS, appendix not include

    A spectroscopic analysis of the eclipsing nova-like EC 21178−5417 – discovery of spiral density structures

    Get PDF
    We present phase-resolved optical spectroscopy of the eclipsing nova-like cataclysmic variable EC 21178−5417 obtained between 2002 and 2013. The average spectrum of EC 21178−5417 shows broad double-peaked emission lines from He II 4686 Å (strongest feature) and the Balmer series. The high-excitation feature, C III/N III at 4640–4650 Å, is also present and appears broad in emission. A number of other lines, mostly He I, are clearly present in absorption and/or emission

    Quantified HI Morphology I: Multi-Wavelengths Analysis of the THINGS Galaxies

    Get PDF
    Galaxy evolution is driven to a large extent by interactions and mergers with other galaxies and the gas in galaxies is extremely sensitive to the interactions. One method to measure such interactions uses the quantified morphology of galaxy images. Well-established parameters are Concentration, Asymmetry, Smoothness, Gini, and M20 of a galaxy image. Thus far, the application of this technique has mostly been restricted to restframe ultra-violet and optical images. However, with the new radio observatories being commissioned (MeerKAT, ASKAP, EVLA, WSRT/APERTIF, and ultimately SKA), a new window on the neutral atomic hydrogen gas (HI) morphology of a large numbers of galaxies will open up. The quantified morphology of gas disks of spirals can be an alternative indicator of the level and frequency of interaction. The HI in galaxies is typically spatially more extended and more sensitive to low-mass or weak interactions. In this paper, we explore six morphological parameters calculated over the extent of the stellar (optical) disk and the extent of the gas disk for a range of wavelengths spanning UV, Optical, Near- and Far-Infrared and 21 cm (HI) of 28 galaxies from The HI Nearby Galaxy Survey (THINGS). Though the THINGS sample is small and contains only a single ongoing interaction, it spans both non-interacting and post-interacting galaxies with a wealth of multi-wavelength data. We find that the choice of area for the computation of the morphological parameters is less of an issue than the wavelength at which they are measured. The signal of interaction is as good in the HI as in any of the other wavelengths in which morphology has been used to trace the interaction rate to date, mostly star-formation dominated ones (near- and far-ultraviolet). The Asymmetry and M20 parameters are the ones which show the most promise as tracers of interaction in 21 cm line observations.Comment: 16 pages, 11 figure, table 1, accepted by MNRAS, appendix not include
    • …
    corecore