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ABSTRACT
Major mergers of disc galaxies are thought to be a substantial driver in galaxy evolution.
To trace the fraction and rate of galaxy mergers over cosmic times, several observational
techniques have been developed over the last decade, including parametrized morphological
selection. We apply this morphological selection of mergers to 21 cm radio emission line (H I)
column density images of spiral galaxies in nearby surveys. In this paper, we investigate how
long a 1:1 merger is visible in H I from N-body simulations.

We evaluate the merger visibility times for selection criteria based on four parameters:
Concentration, Asymmetry, M20 and the Gini parameter of the second-order moment of
the flux distribution (GM). Of three selection criteria used in the literature, one based on
Concentration and M20 works well for the H I perspective with a merger time-scale of 0.4 Gyr.
Of the three selection criteria defined in our previous paper, the GM performs well and cleanly
selects mergers for 0.69 Gyr. The other two criteria (Asymmetry–M20 and Concentration–
M20) select isolated discs as well, but perform best for face-on, gas-rich discs (Tmgr ∼ 1 Gyr).
The different visibility scales can be combined with the selected fractions of galaxies in any
large H I survey to obtain merger rates in the nearby Universe. All-sky surveys such as the
Widefield ASKAP L-band Legacy All-sky Blind surveY (WALLABY) with the Australian
SKA Pathfinder (ASKAP) and the Medium Deep Survey with the APERture Tile In Focus
(APERTIF) instrument on Westerbork are set to revolutionize our perspective on neutral
hydrogen and will provide an accurate measure of the merger fraction and rate of the present
epoch.

Key words: galaxies: fundamental parameters – galaxies: interactions – galaxies: kinematics
and dynamics – galaxies: spiral – galaxies: structure.

1 IN T RO D U C T I O N

The merger rate of galaxies over cosmic times is one of the big
outstanding questions in the evolution of galaxies. Two recent major
observational efforts seek to address the rate of galaxy mergers: one
using close galaxy pairs (e.g. Patton et al. 1997; Le Fèvre et al.
2000), and the other using quantified morphology (e.g. Conselice
2003; Lotz, Primack & Madau 2004). Both give a fraction of the
population at a given redshift that is merging (f m) which then can be

�E-mail: benne.holwerda@esa.int

converted to a merger rate as soon as one knows how long a merger
is identifiable as either a galaxy pair or morphologically disturbed
galaxy. Hence, both methods need a time-scale for which mergers
are identified as such. In this series of papers, we focus on the
morphological approach, specifically the morphology of galaxies in
the 21 cm emission line (H I). Despite the generally lower resolution
of the H I maps compared to optical images, we argue that the
morphological signature of a merger event can be equally well or
better observed because (i) the H I disc extends well beyond the
stellar disc (i.e. offers the same number of resolution elements as
the optical disc), and (ii) the atomic gas is disturbed well before
the stellar disc. Therefore, H I morphology looks promising as an

C© 2011 The Authors
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alternate tracer of mergers, provided representative enough volumes
are surveyed.

A popular measure of the merger signal in galaxy morphol-
ogy uses the Concentration–Asymmetry–Smoothness parameters
(CAS; Conselice 2003), but additional parameters such as Gini (G)
and M20 (Lotz et al. 2004) are used extensively as well. The merger
signal is usually found in the rest-frame ultraviolet or B band, cal-
ibrated by galaxies in the local Universe. The time-scale on which
a merger is identifiable is found from CAS or G and M20 mea-
surements of N-body simulations of mergers (Conselice 2006; Lotz
et al. 2008, 2010a,b) or alternatively from the decline in identified
mergers between two nearby redshift bins, assuming only passive
evolution in the merger rate (Conselice 2009). Both approaches give
consistent estimates of the merger time-scale of about a Gyr or less,
allowing for estimates of the typical number of mergers a massive
galaxy undergoes during its lifetime (Conselice 2006, 2009; Lotz
et al. 2008). A limitation is that morphological identification of
mergers is most effective for gas-rich galaxies (Lotz et al. 2010a)
and varies with the mass ratio of the merging galaxies (e.g. Lotz
et al. 2010b).

All previous work on quantified galaxy morphology as a merger
tracer has focused on rest-frame ultraviolet or the blue side of opti-
cal. The benefits are clear for this technique as the higher redshift
galaxies can be observed with the Hubble Space Telescope at these
wavelengths at comparable spatial resolution to the local refer-
ence samples observed by GALEX or the Sloan Digital Sky Survey
(SDSS). Star formation triggered by the merger increases surface
brightness, easing their identification at higher redshift.

However, in the coming decade, a new window on gas-rich merg-
ers will be opening up with the commissioning of new radio tele-
scopes and instruments: the South African Karoo Array Telescope
(MeerKAT; Jonas 2007; Booth et al. 2009; de Blok et al. 2009),
the Australian SKA Pathfinder (ASKAP; Johnston 2007; Johnston
et al. 2007, 2008; Johnston, Feain & Gupta 2009), the Extended Very
Large Array (EVLA; Napier 2006) and the APERture Tile In Focus
instrument (APERTIF; Verheijen et al. 2008; Oosterloo et al. 2009)
on the Westerbork Synthesis Radio Telescope (WSRT). Ultimately,
this investment in radio observatories will culminate in the Square
Kilometer Array (SKA; Carilli & Rawlings 2004). These observa-
tories will extend the 21 cm line observations of galaxies to high
redshift and low column densities. Specifically, the effective all-sky
survey of the nearby Universe with ASKAP [the Widefield ASKAP
L-band Legacy All-sky Blind surveY (WALLABY) project;
Koribalski et al., in preparation] and the Medium Deep Survey
with WSRT/APERTIF spans an ideal volume for a local merger
fraction and rate measurement. The H I disc’s morphology can be
an alternative tracer of the merger fraction and consequently merger
rate. There is already ample anecdotal evidence for the sensitivity
of H I morphology to interaction (e.g. ‘The H I Rogues Gallery’,
Hibbard et al. 2001, http://www.nrao.edu/astrores/HIrogues/), and
more quantified relations between density and H I morphology exist
(e.g. Bouchard, Da Costa & Jerjen 2009).

In this series of papers, we explore how well the parametrized
H I morphology traces mergers in two local H I surveys: The H I

Nearby Galaxy Survey (THINGS; Walter et al. 2008a) and the
Westerbork observations of neutral Hydrogen in Irregular and
SPiral galaxies (WHISP) project (van der Hulst, van Albada &
Sancisi 2001; van der Hulst 2002). We have found that the H I col-
umn density maps – while at typically lower spatial resolution than
the optical wavelengths – are just as sensitive if not more so to
the effects of a merger, especially when expressed in the morpho-
logical qualifiers customarily used in optical or UV classification

(Holwerda et al. 2009, 2011a). For the first time, it may be possi-
ble to select ongoing merging galaxies from their H I morphology
without any need for a human observer. This will greatly simplify
the classification of galaxies and mergers in the upcoming all-sky
H I surveys.

In a subset of the WHISP sample we showed that there is a simple
cut in morphological parameter space that divides the merging discs
from the general non-merging population (Holwerda et al. 2011b).
The question remains, however, how long a merger is identifiable in
this new window before we can convert observed merger fractions
in WHISP to a merger rate (Holwerda et al. 2011c). In this paper, we
explore the merger visibility time-scale using N-body simulations of
L∗ discs with cold gas discs, both evolving passively and undergoing
a violent 1:1 merger with a similar disc. This paper is organized as
follows. Section 2 briefly discusses the morphological parameters
we use; Section 3 describes the simulations we used, how the H I

map was generated and the limitations of these simulations and the
H I perspective. Section 4 is a discussion on our results from the
N-body simulation, and Section 5 gives our conclusions.

2 MO R P H O L O G Y

In this series of papers we use the CAS system from Bershady,
Jangren & Conselice (2000), Conselice, Bershady & Jangren (2000)
and Conselice (2003), the Gini/M20 system from Lotz et al. (2004)
and our own parameter GM, the Gini parameter of the second-order
moment (Holwerda et al. 2011b). Concentration is defined as

C = 5 log

(
r80

r20

)
, (1)

where rf is the radius which includes the percentage f of the in-
tensity of the object. In an image with n pixels with intensities
I(i, j) at pixel position (i, j) and where I180(i, j) is the value of the
pixel in the rotated image, Asymmetry is

A = �i,j |I (i, j ) − I180(i, j )|
�i,j |I (i, j )| , (2)

and Smoothness is defined as

S = �i,j |I (i, j ) − IS(i, j )|
�i,j |I (i, j )| , (3)

where IS(i, j) is the same pixel in the image after smoothing.
The Gini parameter is an economic indicator of equality, i.e. G =

1, all the flux in one pixel; G = 0, equal values for all pixels in the
object. We use the implementation from Lotz et al. (2004):

G = 1

Ī n(n − 1)
�i(2i − n − 1)|Ii |, (4)

where Ii is the intensity of pixel i in a flux-ordered list of the n pixels
in the object, and Ī the mean pixel intensity.

They also introduced the M20 parameter:

M20 = log

(
�k

i Mi

Mtot

)
, for which �k

i Ii < 0.2Itot is true, (5)

where Mtot = �Mi = �Ii[(xi − xc)2 + (yi − yc)2]. The centre of the
object is at (xc, yc), and pixel k is the pixel marking the top 20 per
cent point in the flux-ordered pixel list.

Instead of the intensity of the pixel (Ii) one can use the second-
order moment of the pixel (Mi = Ii[(xi − xc)2 + (yi − yc)2]) in
equation (4). This is our GM parameter:

GM = 1

M̄in(n − 1)
�i(2i − n − 1)|Mi |, (6)
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Table 1. Mass fractions and number of particles in the different components in both simulations.

Cox et al. (2006b) Weniger et al. (2009)
Component Mass fraction No. of particles Mass fraction No. of particles

Bulge stars 0.012 10 000 0.069 10 000
Disc stars 0.048 30 000 0.118 75 098
Clouds 0.016 36 347
Gas particles 0.065 30 000 0.008 9017
DM particles 0.8 75 100 000 0.789 100 000

Total mass 8.12 × 1011 M� 170 000 2.46 × 1011 M� 230462

which is an indication of the spread of pixel values with distance to
the galaxy centre. The combination of these parameters quantifies
the morphology of H I column density maps. We refer the readers,
for a broader discussion of these parameters, to the previous papers
of this series (Holwerda et al. 2011a,b).

As input, these parameters need an estimate of the centre of
the object and a definition of the area over which they need to be
computed. The centres of the objects are a known quantity: in the
case of the simulations as the centre of the dark matter halo, and in
that of surveys as the centre of the light distribution. To define the
extent of the H I disc, we use a threshold of NH I = 3 × 1020 cm−2.
This defines the area over which the morphological parameters are
computed. This threshold is the stated observational limit of the
WHISP survey (van der Hulst et al. 2001; van der Hulst 2002), and
it is in between the two H I column density thresholds we used in
Holwerda et al. (2009, 2011a) for the extent of the stellar and gas
discs in the THINGS survey (Walter et al. 2008b).

Starting with the snapshots of the H I in simulations, we explore
in this paper the evolution of the above morphological parameters
over time, during both a violent merger and passive evolution in a
few isolated discs. We determine how long a merging disc spends in
the morphological parameter space that hosts mergers as a function
of viewing angle and physical disc characteristics. We found this
space both from literature definitions for optical morphology and
empirically in the WHISP sample for H I morphology (Holwerda
et al. 2011b). Visibility time-scales can then be used to convert
an observed fraction of merging galaxies into a merger rate – the
number of galaxies merging in a given volume per Gyr – as applied
to the whole WHISP sample in the companion paper (Holwerda
et al. 2011c). One caveat that we need to point out from the outset
is that our merger simulations are for 1:1 merger of massive spiral
discs and the WHISP sample consists of a mix of galaxy masses
(see Appendix B in the electronic version of the article). Future
suites of merger simulations should include a wider mass range and
gas fraction.

3 SI M U L AT I O N S O F M E R G I N G
AND ISOLATED SPIRAL DISCS

Our primary set of simulations is a suite of equal-mass mergers from
Cox et al. (2006a), from which an atomic hydrogen component was
estimated by one of us (TJC) assuming thermal equilibrium. H I

maps for a control sample of isolated spiral discs, passively evolving
for 2.5 Gyr, were constructed in the same manner.

To gauge the importance of different implementations of a Milky
Way sized disc in a merger simulation, we also use a single merger
simulation and isolated disc simulation from Weniger, Theis &
Harfst (2009), also converted to an H I column density map. The
code, assumed physics and time-scales are different for the Weniger
simulations (see Section 4.3).

Table 2. Scales of the different components of the disc galaxies.

Cox et al. (2006) Weniger et al. (2009)
Component (kpc) (kpc)

Disc
Scalelength, Rd 4.0 4.0
Scaleheight, z0 1.0 0.4
Gas scalelength 16.5
Bulge scalelength, Rb 0.45

All the merger simulations are for equal-mass mergers of two
large spiral galaxies. The suite from Cox et al. and the single sim-
ulation from Weniger et al. are for spiral galaxies of similar scale
and mass (see Tables 1 and 2).

3.1 Simulations from Cox et al. (2006a,b)

The merger simulations suite from Cox et al. (2006a) uses the
N-body/smoothed particle hydrodynamics (SPH) code GADGET

(Springel, Yoshida & White 2001; Springel & Hernquist 2002).
It conserves entropy and features additional routines that track the
radiative cooling of gas and star formation (Volker Springel, pri-
vate communication to T. J. Cox in 2001). In addition, Cox et al.
(2006a) implemented several new features themselves: stellar feed-
back, metallicity-dependent cooling and the ability of each gas
particle to spawn multiple new stellar particles.

The simulations are for the isolated discs as well as the ma-
jor mergers with variations in disc properties and viewing angles
(Table 3). All these simulations run for 2.5 Gyr in steps of 100 Myr.
Images are surface brightness values in 104 h M� pc−2 with a pixel
scale of 150 pc. The high resolution of these simulations enabled
us to construct H I maps with sampling much finer than any current
survey [see Table B1 (in the online appendix – see Supporting In-
formation)], and closer to the resolution typical for optical images.
The nominal discs in these simulations are spirals with a ∼109 M�
gas disc (unless noted differently), which, in the case of mergers,
interacts with an identical disc.

Significant disc properties that are varied are mass (high-m and
low-m), and the treatment of the feedback from star formation on
the interstellar matter (ism2). We consider three orientations: face-
on, at a 45◦ angle (orientation2) and edge-on (edge-on). Examples
of the face-on discs, isolated and merger are shown in Fig. 1 and
Appendix A (in the electronic version of the article – see Supporting
Information). For more details on these simulations, we refer the
reader to Cox et al. (2006a,b).

3.2 The single merger simulation from Weniger et al. (2009)

As a consistency check, we apply our morphological code to the
single merger simulation from Weniger et al. (2009), as well as a
single isolated disc simulation. Following Harfst, Theis & Hensler

C© 2011 The Authors, MNRAS 416, 2426–2436
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Table 3. Cox et al. suite of merger simulations.

Isolated

Face-on Reference, 3.34 × 1010 M� total disc mass
Edge-on Same but edge-on perspective
High mass Face-on perspective on 8.7 × 1010 M�
Low mass Face-on perspective on 1.24 × 1010 M�

Mergers

Face-on
Run 1 Face-on perspective on two

3.34 × 1010 M� discs collision
Run 2 Same with slightly different collision orbit

Orientation
45◦ Same at a 45◦ camera angle
Edge-on Same for edge-on camera

Disc mass
High mass Face-on perspective on two 8.7 × 1010 M�
Low mass Face-on perspective on two 1.24 × 1010 M�

Different ISM Different ISM feedback treatment
(see Cox et al. 2006a)

High mass With 8.7 × 1010 M� discs.
Low mass With 1.24 × 1010 M� discs.

(2006), they constructed the initial galaxies by first generating a
disc/bulge/halo system using the method of Kuijken & Dubinski
(1995). In their next step, one-fifth of the stellar disc particles were
transformed into molecular clouds and finally the diffuse interstellar
medium (ISM) was added as an initially slowly rotating homoge-
neous sphere, which will collapse in the first 200 Myr forming a
warm disc. The collisionless model of Kuijken & Dubinski (1995)
realizes an equilibrium configuration but in this case, the equilib-
rium is affected by adding the ISM. Therefore, Weniger et al. (2009)
first follow the system’s evolution, until quasi-equilibrium is estab-
lished. The numerical integration is done by means of a TREE-SPH

code combined with the sticky particle method (Theis & Hensler
1993). Gravitational forces are determined by the DEHNEN-Tree
(Dehnen 2002). The cold gas (T < 104 K) in this simulation was
converted to the H I map, assuming that the fraction of the cold gas
which is observable as H I depends on the thermal pressure. The
H I map was smoothed by a Gaussian with a full width at half-
maximum (FWHM) of 1 kpc. The centre of the interacting disc is
taken to be the centre of the bulge stars distribution. Time-steps are
10 and 50 Myr for the isolated disc and merger simulation, respec-
tively. For more details we refer the reader to Harfst et al. (2006)
and Weniger et al. (2009).

3.3 Limitations

The suite of simulations of isolated and merging discs from Cox
et al. (2006a) as well as the implementation check from Weniger
et al. (2009) are limited in their scope of disc (and merger) prop-
erties, i.e. only a large, gas-rich spiral disc colliding with its twin
or evolving passively. There are only three different disc masses
and camera angles, and no change in merger impact parameter of
incident angle (see Table 3). We limited our scope to this suite as
we could easily obtain H I maps for these simulations and still be
consistent in treatment of physics and particle resolution across the
sample (with the Weniger implementation as the exception). Our
second reason was that simulations of isolated discs with identical
physics and resolution evolving for a similar amount of time were
available.

Future simulations of the evolution of H I morphology should
include more minor mergers, a greater range in disc mass, a range
in gas fraction, different impact parameters and incident angles of
the mergers, as well as more camera angles. The suite of simula-
tions presented in Lotz et al. (2010a,b) explores more parameter
space, generating optical morphology measures. A similar effort
will be needed in H I before volume-limited all-sky surveys in H I

are completed to complement the initial effort presented in this
paper.

3.4 Shaping the H I morphology

The morphology of the H I disc is influenced by many different
processes, only one of which is gravitational interaction with a
neighbouring galaxy. The morphology is also determined by the
level of star formation (triggered or not by the interaction), which
consumes gas, and the stellar winds and supernova feedback that
create the typical ‘effervescent’ look of H I maps. An additional
effect from star formation (or an active AGN) can be that much of
the gas in a galaxy is heated or ionized, and thus no longer visible
in the H I map. Depending on the temperature and dust fraction of
the ISM, much of the higher density parts of the spiral gas disc will
be in the form of molecular hydrogen, also removing it from the H I

map. Ram-pressure effects experienced during travel through the
intergalactic medium of a cluster may also contribute significantly
to the appearance of the H I disc.

The simulations treat ISM feedback from star formation compre-
hensively but for now, we set aside the effects of an active galactic
nucleus (AGN) switching on or the interaction happening in a dense
cluster medium. In a further paper in this series (Holwerda et al.
2011d), we do explore how much ram-pressure and H I stripping
of galaxies change these parameters using the VLA Imaging of
Virgo spirals in Atomic gas (VIVA; Chung et al. 2009). We find that
stripped H I discs are easily identified with low values of Concen-
tration. The effect of moderate ram pressure on a sample of H I discs
will, however, be more difficult to quantify. The phenomena of H I

lopsidedness, which may be related to ram-pressure stripping, seem
to have only a moderate effect on these parameters (see Holwerda
et al. 2011b).

Therefore, we compare the morphological evolution of H I discs
with the same physics (feedback, ISM heating, etc.), in identical
discs, and only change one critical aspect: in some simulations
these discs merge with similar discs, and in others they evolve
passively.

4 H I M O R P H O L O G Y O F M A J O R M E R G E R S

We have run four isolated discs and eight merger simulations over a
time of 2.5 Gyr (Cox et al. 2006a) and a single simulation of a major
merger and one isolated face-on disc that ran for 3 Gyr (Weniger
et al. 2009). The resulting tables of morphological parameters over
time can be found in Appendices C and D (see Supporting Informa-
tion) for both isolated and merging discs. The default perspective
is face-on, with variation in disc mass and treatment of the ISM
(Table 3).

4.1 Merging and isolated discs

Fig. 2 shows the progression over time of three parameters for
both the merger scenarios (black lines) and the isolated discs (grey
lines) for the H I discs. We note how these three parameters already

C© 2011 The Authors, MNRAS 416, 2426–2436
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Figure 1. Three H I snapshots (at times T = 0.1,1.2 and 2.4 Gyr) of two of our simulations, the nominal isolated, passively evolving spiral disc (left) and the
interacting and one instance of the merging disc (right). Contours are at 0.5, 1.0 and 2.5 M� pc−2 to highlight the extent of the discs at low column densities.

separate isolated discs and the merging ones as well as identify the
times the galaxies are interacting most strongly.

All three parameters show a clear parameter space where the
galaxy disc is almost certainly merging (GM > 0.6, M20 ∼ −3
and A > 0.5) and a part where it is unlikely to be merging. In the

case of M20 and GM, the merging discs return to the isolated disc’s
value periodically. Their values spike at the time of close passage
of the merging companion. The variation of the disc mass (low-m
and high-m simulations) does not change the overall morphological
signature appreciably.

C© 2011 The Authors, MNRAS 416, 2426–2436
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Figure 2. Asymmetry, M20 and GM as a function of time in the isolated (grey) and mergers (black) for the H I discs from Cox et al. (2006a,b). The discs are
differentiated between nominal discs (solid lines), higher mass (short dashed lines), lower mass (long dashed lines), with different ISM treatment (high-mass,
dot-short dash; low-mass, dot-long dash), and edge-on (dotted lines). The thick lines are the times A < −0.2 × M20 + 0.25, one of our selection criteria.
Isolated discs (grey lines) have less Asymmetry (A < 0.5), high values for M20 (close to 0) and low GM values. Based on these timelines, the mergers do
occasionally return to quiescent parameter space but differentiate well for a large fraction of the time.

Figure 3. Edge-on: Asymmetry, M20 and GM of the edge-on cases as a function of time in the isolated (grey) and mergers (black) of the cold gas. The thick
lines are the times A < −0.2 × M20 + 0.25, one of our selection criteria.

4.2 Edge-on discs

Edge-on galaxies are morphologically the least disturbed perspec-
tive on a merger. Fig. 3 shows the isolated disc and merging disc in
cold gas, just from the edge-on perspective (dotted lines in Fig. 2).
The merger is still morphologically selected by our selection crite-
rion (see Section 4.4), albeit not very often. However, in the case of
the edge-on perspective, any signature in the dynamical profile of
the galaxy will be the strongest, i.e. there will be a clear deviation
of the typical ‘double-horned’ profile of the H I line. Thus, our mor-
phological and kinematic approaches to selecting interacting spirals
in large H I surveys are very complementary.

4.3 Comparison to Weniger et al.

Fig. 4 shows the values of Asymmetry, M20 and GM of the H I

maps for a merging and an isolated galaxy from the simulation of
Weniger et al. (2009). Asymmetry shows a steady rise with time
for the isolated disc and clear spikes during the major encounters.
M20 displays a very similar evolution to the plot in Fig. 2 with
some notable evolution by the isolated disc. GM spikes at the close
encounters, very similar to Asymmetry.

The morphological selection criteria (see the next section) per-
form well on the Weniger et al. simulation, selecting the merging

galaxy for part of the time and mostly not selecting the isolated
galaxy’s H I disc. The times, in billions of years, the Weniger et al.
merger is selected by the various morphological criteria are listed
at the bottom of Table 4. The generally similar behaviour of the
Weniger et al. simulation to the suite from Cox et al. is an indica-
tion of the robustness of the morphological selection.

4.4 Merger selection criteria

The goal of this paper is to obtain a typical time-scale over which
mergers are visible as disturbed H I morphologies. The visibility
time depends on the selection criteria, observed wavelength and
orientation of the merger. We can now explore how the visibility
times for each visibility criterion relate to the different physical
properties of each merger run, e.g. gas mass, viewing angle, etc.

Originally, these parameters were envisaged to classify the mor-
phologies of galaxies and hence a single parameter criterion will
not necessarily work. Interacting spiral discs are a subset of the
parameter space occupied by late-types. Conselice (2003) and Lotz
et al. (2004) introduced several different criteria for the selection of
merging systems in their respective parameter systems. For optical
data, Conselice (2003) define the following criterion:

A > 0.38, (7)
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Figure 4. Asymmetry, M20 and GM of both galaxies in the simulation of Weniger et al. (2009). The morphologies of the merging galaxy in H I (black lines)
and isolated galaxy (grey lines) are shown as a function of time. As an example, the thick black lines are those times of the simulation when the merger would
be selected by the A < −0.2 × M20 + 0.25 criterion.

Table 4. The times in Gyr that an H I simulation from Cox et al. (2006a) is
selected by the different criteria. Criteria are from Holwerda et al. (2011b),
and those adopted from the literature.

Criterion 1 2 3 4 5 6 7 8

Isolated

Face-on 2.2 0 0 0 0.8 0.2 0 0.1
High-mass 2.4 0 0 0 0.6 0 0 0
Low-mass 2 0.1 0.1 0 2.2 1.7 0 1.7
Edge-on 0 0 0 0 2.5 0.9 0 0.9

Mean 1.63 0 0 0 1.53 0.68 0 0.65
rms 1.01 0.007 0 0 0.70 0.48 0 0.51

Mergers

Face-on run 1 1.2 0 0.4 0.6 1.9 0.5 0.4 0.1
Face-on run 2 2.1 0 0.5 0.9 0.9 1.5 0.3 0.4
45◦ 1.3 0 0.5 0.6 1.9 1.1 0.4 0.6
Edge-on 2.3 0 1 1.2 0.7 1.3 0.2 0.2
High-m 1.7 0 0.3 0.4 0.9 1 0.1 0
Low-m 2.1 0 0 0.9 0.4 1.4 0 0
ism2 high-m 1.9 0 1 0.1 1.5 0.9 0.1 0.5
ism2 low-m 1.9 0 0 0.7 0.8 1.1 0 0

Mean 1.9 0 0.44 0.69 1.01 1.19 0.16 0.24
rms 0.4 0 0.12 0.21 0.33 0.20 0.02 0.05

Weniger
iso 0.01 0 0.01 0 3 0 0 0
mm 1.15 0.50 1.10 0.40 2.30 0.65 0.10 0.15

1. A > 0.4 from Conselice (2003).
2. G > −0.115M20 + 0.384 from Lotz et al. (2004).
3. G > −0.4A + 0.66 from Lotz et al. (2004).
4. GM > 0.6 from Holwerda et al. (2011b).
5. A < −0.2M20 + 0.25 from Holwerda et al. (2011b).
6. C > −5M20 + 3 from Holwerda et al. (2011b).
7. The combination of GM > 0.6 and A < −0.2M20 + 0.25.
8. The combination of A < −0.2M20 + 0.25 and C > −5M20 + 3.

with some authors requiring A > S as well. In general, highly
asymmetric galaxies are candidate merging systems (Fig. 2).

Lotz et al. (2004) added two different criteria using Gini and M20:

G > −0.115 × M20 + 0.384 (8)

and

G > −0.4 × A + 0.66 or A > 0.4, (9)

the latter being a refinement of the Conselice et al. criterion in
equation (7).

These criteria were developed for optical morphologies, typically
observed Johnson-B or sdss-g optical filters. Typical optical spatial
resolution (∼2 arcsec) is a factor of a few higher than the typical
spatial resolution of the H I maps (6–12 arcsec; depending on the
survey). Therefore, in the second paper in this series (Holwerda et al.
2011b), we defined several possible criteria specifically for the H I

perspective using the CAS–G/M20–GM space of the WHISP survey
H I map sample. We defined the Gini parameter of the second-order
moment, GM, and a criterion that selected most interacting galaxies:

GM > 0.6, (10)

a criterion that seems to be corroborated by Fig. 2.
Earlier in this series, we speculated that a combination of Asym-

metry and M20 could well be used to select interaction in H I mor-
phology in Holwerda et al. (2011a). In Holwerda et al. (2011b), we
defined this criterion as

A > −0.2 × M20 + 0.25. (11)

Finally, we also defined one based on Concentration and M20,
following the example of the Lotz et al. (2004) criteria (equations 8
and 9):

C > −5 × M20 + 3. (12)

In Holwerda et al. (2011a), we found that this last criterion both
selected the correct fraction of interacting galaxies and agrees most
often with the previous visual identification in the case of individual
WHISP galaxies.

We can now explore the time-scales of each of these criteria: both
those from the literature and those we determined in the WHISP
sample subset. The most reliable merger selection criterion would
be the one that selects the right fraction of galaxies out of a given
sample for a long time-scale, with little contamination from iso-
lated galaxies. Preferably, viewing angle or physical disc char-
acteristics (e.g. gas mass) do not influence the time-scale overly
much. A long selection time-scale would subsequently ensure a
more accurate estimate of the merger rate from a given volume of
galaxies.

C© 2011 The Authors, MNRAS 416, 2426–2436
Monthly Notices of the Royal Astronomical Society C© 2011 RAS



Merger visibility times in H I 2433

Figure 5. The parameters of isolated discs (grey points) and mergers (black points) of all time-points in all simulations. The (optical) merger selection criteria
from the literature (Conselice 2003; Lotz et al. 2004) are marked with dashed lines in panel II (equation 8, below the line is a merger), panel IV (equations 7
and 9, above or to the right of the lines is a merger), and V and VI (equation 7, above the line is a merger). Our selection criteria from Holwerda et al. (2011b)
are marked with dotted lines; the GM criterion in panels I, III, VI and X (equation 10, right of the line is a merger), the A–M20 criterion in panel V (11, above
the line is a merger), and the C–M20 criterion in panel IX (equation 12, above the line is a merger). Similar to fig. 4 in Holwerda et al. (2011b).

Fig. 5 shows the relations between the morphological parameters
for the H I gas discs in the Cox et al. simulations, similar to fig. 4 in
Holwerda et al. (2011b), from which we determined the selection
criteria for H I morphologies (equations 10–12). The literature and
our merger selection criteria are marked with dashed and dotted
lines, respectively. The times for which an H I disc is selected by
the various selection criteria are listed in Table 4.

Fig. 6 shows the six criteria (equations 7–12) as a function of
time for all our simulations, both isolated and merging discs. If the
y-axis values are positive, the merger would have been selected by
this criterion. Immediately, it is apparent that the three criteria that

we defined in Holwerda et al. (2011b) perform very well, separating
merging galaxies from isolated discs. It is also clear that selection
happens most often in the first 1.5 Gyr of the merger simulations and
that some of the criteria could be adjusted for the native resolution
of these simulations.

The selection by Asymmetry alone (equation 7 or similar) does
not translate well to H I. Asymmetry alone selects isolated and
merging galaxies for almost equal times (Fig. 6, top-left panel,
Table 4). This validates what we found for this criterion in the
WHISP sample and our suspicion in Holwerda et al. (2011a) that
H I Asymmetry is influenced by other factors than merging. From
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Figure 6. Time evolution of the six criteria (equations 7–12) for different simulations of isolated discs (grey lines) and merging (black lines). A positive value
indicates selection by the criterion as a merger. Different simulations are marked as in Fig. 2; nominal discs (solid lines), higher mass (short dashed lines),
lower mass (long dashed lines), with different ISM treatment (high-mass, dot-short dash; low-mass, dot-long dash), and edge-on (dotted lines). The top three
panels are the criteria from the literature (equations 7–9); the bottom three panels are those defined in Holwerda et al. (2011b) specifically for WHISP H I maps.

Fig. 6, one could conclude that a stricter Asymmetry criterion would
work better but this is only valid for the resolution of our simulations.
The Gini–M20 criterion (equation 8) would need to be modified for
the H I perspective and performs poorly in the separation of mergers
from isolated discs in its current definition (Fig. 6, top middle panel).
The Gini–Asymmetry criterion (equation 9, Fig. 6, top-right panel)
performs much better, very rarely selecting the isolated disc and
selecting mergers on average for 0.44 Gyr out of the 2.5 Gyr the
simulations ran.

However, these simulations ran on the maximum spatial resolu-
tion (150 pc sampling). The selection criteria perform a little more
poorly for lower resolution (Appendix B in the electronic version of
the article). For example, the Gini–Asymmetry selection criterion
(equation 9) still performs well for the WHISP survey observational
parameters (Table B3) but with a typical selection time-scale of
0.15 Gyr. These merger visibility times are close to the ones typi-
cally quoted for these selection criteria applied to optical images of
stellar discs (e.g. Lotz et al. 2010a,b).

Of the literature criteria, only the Gini–Asymmetry one appears
to translate directly from optical to H I morphology. Our selection
criteria (equation 10–12) were based on a WHISP subsample of H I

column density maps for which we had visual estimates of inter-
action. Our GM criterion (equation 10) cleanly selects mergers for
0.69 Gyr of the 2.5 Gyr runtime (Fig. 6, bottom-left panel). The
selection becomes diluted, however, when the simulations are
smoothed to the WHISP resolution (Table B3 – online appendix) or
worse (e.g. VIVA; Table B4 – online appendix). The A–M20 selec-

tion criterion (equation 11) appeared to work extremely well in the
WHISP data. Yet, in the simulations, it selects isolated discs more
often, on average, than merging ones (Fig. 6, the bottom-middle
panel). One can conceivably still use criteria like this one, provided
the selected galaxy fraction is corrected for the contamination by
isolated discs, or the criterion is adjusted to the resolution of the data.
The Concentration–M20 criterion (equation 12) performs better,
selecting mergers for 1.19 Gyr versus isolated discs for 0.69 Gyr,
but would also need a substantial correction for the isolated disc
contaminations (Fig. 6, bottom-right panel). We note that the main
reason that isolated discs are selected by this criterion are the low
gas-mass and edge-on disc simulation, and this criterion performs
much better for the low inclination discs. Contamination increases
again when the simulations are degraded to WHISP resolution
(Table B3 – online appendix).

In Holwerda et al. (2011b), we found that the Concentration–
M20 criterion not only flagged the correct fraction of galaxies as
merging but also agreed in many cases with the visual classifications
on which galaxies were interacting. Here, we find that the merger
visibility time-scale is in a similar range or even a little better than
the selection criteria from the literature for optical images of discs
(typically ≤1 Gyr). Thus, depending on the volume surveyed and
the spatial resolution of the survey, an H I survey of discs can provide
an estimate of the merger rate at least as accurate as any optical one
using these parameters.

Lotz et al. (2010a) note that gas-rich mergers tend to be se-
lected more often in the optical morphological selections, because
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gas-rich mergers trigger more star formation, which leaves brighter
tidal features in the discs before a full merger. Similar selection bi-
ases are pertinent for H I morphology: more gas-rich discs will stand
out in 21 cm observations. Lowering or increasing the gas mass of
the discs does influence the selection times, as does a different
treatment of the ISM physics (ism2 or the Weniger simulation),
increasing the variance in merger visibility times.

The perspective or camera angle on the merger does influence
the selection time for all the different criteria. Oddly, the edge-
on perspective appears to occasionally raise the time for which
a merger gets selected by some of the morphological parameter
criteria. However, this can be expected to be the poorest viewing
angle, regardless of whether or not the morphology is determined
in H I or optical.

The changes in perspective, gas disc mass and ISM treatment
for different simulations give an indication of the spread in merger
visibility times in Table 4, which is substantial. Therefore, we can
determine an accurate merger fraction for a sample of galaxies as-
sociated with a known volume, yet the merger rate will still be
subject to some uncertainty due to the range in possible merger
visibility times. With these average values in Table 4 in hand, the
morphologically selected fraction of an H I survey can now be con-
verted to a merger rate with a reasonable accuracy (Holwerda et al.
2011c).

5 C O N C L U S I O N S

In this paper, we obtained an understanding of the morphology of
H I discs during a major merger. Observationally, we have already
found that the morphological parameters, currently in use to classify
galaxies and identify mergers at optical and UV wavelengths, can
be applied very productively to H I maps. Applying these to the cold
gas and H I maps based on N-body simulations, we conclude the
following.

(1) The current merger simulations do an excellent job repro-
ducing the stellar disc and its morphology as well as an accurate
cold atomic hydrogen (H I) map. The morphology of the H I maps
follows those seen in observations well both in appearance (Fig. 1)
and quantified with CAS, G and M20 (Fig. 5).

(2) Asymmetry, M20 and GM are good parameters to distinguish
mergers from isolated discs (Figs 2 and 4) but a combination of
morphological parameters often works better (Fig. 6).

(3) Both the Weniger et al. and the Cox et al. merger simulations
show very similar behaviour in morphology (Figs 2 and 4). Different
implementations of the ISM physics need not result in dramatically
different global H I morphology.

(4) Disc gas mass, orientation or the treatment of ISM physics
do not substantially change the separation in parameter space of
merging and isolated discs in these three parameters (Fig. 2).

(5) Even the edge-on perspective on a merger produces a mor-
phological signature in the H I column density maps (Fig. 3), yet
this remains the poorest viewing angle, often confusing merging
and isolated discs.

(6) Of the merger criteria from the literature, the one based on
Gini and Asymmetry performs well for the H I perspective, selecting
mergers for 0.4 Gyr out of a runtime of 2.5 Gyr.

(7) The merger criteria defined in Holwerda et al. (2011b) specif-
ically for H I show a range of merger selection time-scales as well
as some contamination from isolated discs (Fig. 5 and Table 4). Of
these three, the GM selection appears to be the cleanest selection
with 0.69 Gyr visibility time.

(8) The criteria we found to perform best on the WHISP sample,
C > −5M20 + 3, have a visibility time of ∼1 Gyr, but with some
contamination by isolated discs, mostly low gas mass and edge-on
ones.

In the future, more detailed and comprehensive suites of simu-
lated H I discs will become available, which will allow for determi-
nations of merger time-scales for both dynamical and morpholog-
ical signatures in H I observations. Such simulations will become
necessary when the large volume surveys on the SKA precursors
commence. Notably, the all-sky H I survey that will result from the
WALLABY project with the ASKAP radio telescope and the North-
ern H I survey with the APERTIF instrument on WSRT combined
will produce hundreds of thousands of H I data cubes, at similar
resolutions to WHISP. Automated merger classification of these
surveys will be the only feasible way to delineate samples, as well
as determine a more accurate merger rate in the local Universe from
an H I perspective. Hopefully, this observational effort will be ac-
companied by an expanded suite of merger simulations to obtain
a more accurate mean selection rate and possibly a spread due to
difference in ISM, orientation and disc masses. Following the rea-
soning of Lotz et al. (2010a,b), we will need to determine merger
visibility time-scales for the gas-rich and unequal mergers for which
these upcoming surveys will be especially sensitive.

Another possible future use of H I morphological parameters is
to combine them with those at other wavelengths, e.g. optical. The
different times at which the disc becomes disturbed – earlier in H I,
followed by optical – could be used to estimate in what phase any
given merger is.

AC K N OW L E D G M E N T S

We acknowledge support from the National Research Foundation
of South Africa. The work of BWH and WJGdB is based upon
research supported by the South African Research Chairs Initiative
of the Department of Science and Technology and the National
Research Foundation. AB acknowledges the financial support from
the South African Square Kilometer Array Project. JW is supported
by the University of Vienna in the framework of the Inititivkolleg
(IK) ‘The Cosmic Matter Circuit’ I033-N and would like to thank
Christian Theis and Stephan Harfst for fruitful discussions.

REFERENCES

Bershady M. A., Jangren A., Conselice C. J., 2000, AJ, 119, 2645
Booth R. S., de Blok W. J. G., Jonas J. L., Fanaroff B., 2009, preprint

(arXiv:0910.2935)
Bouchard A., Da Costa G. S., Jerjen H., 2009, AJ, 137, 3038
Carilli C. L., Rawlings S., 2004, New Astron. Rev., 48, 979
Chung A., van Gorkom J. H., Kenney J. D. P., Crowl H., Vollmer B., 2009,

AJ, 138, 1741 (Erratum: 2010, AJ, 139, 2716)
Conselice C. J., 2003, ApJS, 147, 1
Conselice C. J., 2006, ApJ, 638, 686
Conselice C. J., 2009, MNRAS, 399, L16
Conselice C. J., Bershady M. A., Jangren A., 2000, ApJ, 529, 886
Cox T. J., Dutta S. N., Di MatteoT., Hernquist L., Hopkins P. F., Robertson

B., Springel V., 2006a, ApJ, 650, 791
Cox T. J., Jonsson P., Primack J. R., Somerville R. S., 2006b, MNRAS, 373,

1013
de Blok W. J. G., Jonas J., Fanaroff B., Holwerda B. W., Bouchard A., Blyth

S., van der Heyden K., Pirzkal N., 2009, in Serra P., Heald G., eds,
Panoramic Radio Astronomy: Wide field 1–2 GHz Research on Galaxy
Evolution. SISSA, http://pos.sissa.it

Dehnen W., 2002, J. Comput. Phys., 179, 27

C© 2011 The Authors, MNRAS 416, 2426–2436
Monthly Notices of the Royal Astronomical Society C© 2011 RAS



2436 B. W. Holwerda et al.

Harfst S., Theis C., Hensler G., 2006, A&A, 449, 509
Hibbard J. E., van Gorkom J. H., Rupen M. P., Schiminovich D., 2001, in

Hibbard J. E., Rupen M., van Gorkom J. H., eds, ASP Conf. Ser. Vol.
240, Gas and Galaxy Evolution. Astron. Soc. Pac., San Francisco, p. 657

Holwerda B. W., de Blok W. J. G., Bouchard A., Blyth S., van der Heyden
K., Pirzkal N., 2009, in Serra P., Heald G., eds, Panoramic Radio As-
tronomy: Wide field 1–2 GHz Research on Galaxy Evolution. SISSA,
http://pos.sissa.it

Holwerda B. W., Pirzkal N., de Blok W. J. G., Bouchard A., Blyth
S.-L., van der Heyden K. J., Elson E. C., 2011a, MNRAS, in press
(doi:10.1111/j.1365-2966.2011.18938.x)

Holwerda B. W., Pirzkal N., de Blok W. J. G., Bouchard A., Blyth
S.-L., van der Heyden K. J., Elson E. C., 2011b, MNRAS, in press
(doi:10.1111/j.1365-2966.2011.17683.x)

Holwerda B. W., Pirzkal N., de Blok W. J. G., Bouchard A., Blyth S.-L.,
van der Heyden K. J., 2011c, MNRAS, in press (doi:10.1111/j.1365-
2966.2011.18942.x)

Holwerda B. W., Pirzkal N., de Blok W. J. G., van Driel W., 2011d, MNRAS,
in press (doi:10.1111/j.1365-2966.2011.18662.x)

Johnston S., 2007, in Beswick R., ed., From Planets to Dark Energy: the
Modern Radio Universe. SISSA, http://pos.sissa.it, p.6

Johnston S. et al., 2007, Publ. Astron. Soc. Australia, 24, 174
Johnston S. et al., 2008, Exp. Astron., 22, 151
Johnston S., Feain I. J., Gupta N., 2009, in Saikia D. J., Green D. A., Gupta

Y., Venturi T., eds, ASP Conf. Ser. Vol. 407, The Low-Frequency Radio
Universe. Astron. Soc. Pac., San Francisco, p. 446

Jonas J., 2007, in Beswick R., ed., From Planets to Dark Energy: the Modern
Radio Universe. SISSA, http://pos.sissa.it, p. 7

Kuijken K., Dubinski J., 1995, MNRAS, 277, 1341
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