3,763 research outputs found

    Spin and spatial dynamics in electron-impact scattering off S-wave He using R-matrix with Time-Dependence theory

    Get PDF
    R-matrix with time-dependence theory is applied to electron-impact ionisation processes for He in the S-wave model. Cross sections for electron-impact excitation, ionisation and ionisation with excitation for impact energies between 25 and 225 eV are in excellent agreement with benchmark cross sections. Ultra-fast dynamics induced by a scattering event is observed through time-dependent signatures associated with autoionisation from doubly excited states. Further insight into dynamics can be obtained through examination of the spin components of the time-dependent wavefunction.Comment: 6 pages, 5 figure

    Population trapping in bound states during IR-assisted ultra-fast photoionization of Ne+^+

    Get PDF
    We have investigated photoionization of Ne+^+ in the combined field of a short infra-red laser pulse and a delayed ultra-short pulse of the infra-red laser's 23r^rd^d harmonic. We observe an ionization yield compatible with a picture in which one electron gets excited into Rydberg states by the harmonic laser field and is subsequently removed by the infra-red laser field. Modulations are seen in the ionization yield as a function of time delay. These modulations originate from the trapping of population in low members of the Rydberg series with different states being populated at different ranges of delay times. The calculations further demonstrate that single-threshold calculations cannot reproduce the Ne+^+ photoionization yields obtained in multi-threshold calculations.Comment: 7 pages, 5 figures, 1 tabl

    Multiphoton inner-shell ionization of the carbon atom

    Get PDF
    We apply time-dependent R-matrix theory to study inner-shell ionization of C atoms in ultra-short high-frequency light fields with a photon energy between 170 and 245 eV. At an intensity of 1017^{17} W/cm2^2, ionization is dominated by single-photon emission of a 2β„“2\ell electron, with two-photon emission of a 1s electron accounting for about 2-3\% of all emission processes, and two-photon emission of 2β„“2\ell contributing about 0.5-1\%. Three-photon emission of a 1s electron is estimated to contribute about 0.01-0.03\%. Around a photon energy of 225 eV, two-photon emission of a 1s electron, leaving C+^+ in either 1s2s2p3^3 or 1s2p4^4 is resonantly enhanced by intermediate 1s2s2^22p3^3 states. The results demonstrate the capability of time-dependent R-matrix theory to describe inner-shell ionization processes including rearrangement of the outer electrons.Comment: 7 pages, 2 figures, 2 table

    Angular distributions in two-colour two-photon ionization of He

    Get PDF
    We present R-Matrix with time dependence (RMT) calculations for the photoionization of helium irradiated by an EUV laser pulse and an overlapping IR pulse with an emphasis on the anisotropy parameters of the sidebands generated by the dressing laser field. We investigate how these parameters depend on the amount of atomic structure included in the theoretical model for two-photon ionization. To verify the accuracy of the RMT approach, our theoretical results are compared with experiment.Comment: 8 pages, 4 figures, 1 tabl

    Electron dynamics in the carbon atom induced by spin-orbit interaction

    Get PDF
    We use R-Matrix theory with Time dependence (RMT) to investigate multiphoton ionization of ground-state atomic carbon with initial orbital magnetic quantum number MLM_L=0 and MLM_L=1 at a laser wavelength of 390 nm and peak intensity of 1014^{14} W cmβˆ’2^{-2}. Significant differences in ionization yield and ejected-electron momentum distribution are observed between the two values for MLM_L. We use our theoretical results to model how the spin-orbit interaction affects electron emission along the laser polarization axis. Under the assumption that an initial C atom is prepared at zero time delay with ML=0M_L=0, the dynamics with respect to time delay of an ionizing probe pulse modelled using RMT theory is found to be in good agreement with available experimental data.Comment: 8 pages, 5 figure

    Harmonic generation of noble-gas atoms in the Near-IR regime using ab-initio time-dependent R-matrix theory

    Get PDF
    We demonstrate the capability of ab-initio time-dependent R-matrix theory to obtain accurate harmonic generation spectra of noble-gas atoms at Near-IR wavelengths between 1200 and 1800 nm and peak intensities up to 1.8 X 10(14) W/cm(2) . To accommodate the excursion length of the ejected electron, we use an angular-momentum expansion up to Lmax = 279. The harmonic spectra show evidence of atomic structure through the presence of a Cooper minimum in harmonic generation for Kr, and of multielectron interaction through the giant resonance for Xe. The theoretical spectra agree well with those obtained experimentally.Comment: 6 pages, 5 figure

    Double Ionisation in R-Matrix Theory Using a 2-electron Outer Region

    Get PDF
    We have developed a two-electron outer region for use within R-matrix theory to describe double ionisation processes. The capability of this method is demonstrated for single-photon double ionisation of He in the photon energy region between 80 eV to 180 eV. The cross sections are in agreement with established data. The extended RMT method also provides information on higher-order processes, as demonstrated by the identification of signatures for sequential double ionisation processes involving an intermediate He+^{+} state with n=2n=2.Comment: 5 pages, 4 figure

    Extreme-Ultraviolet-Initated High-Order Harmonic Generation: Driving Inner-Valence Electrons Using Below-Threshold-Energy Extreme-Ultraviolet Light

    Get PDF
    We propose a novel scheme for resolving the contribution of inner- and outer-valence electrons in XUV-initiated high-harmonic generation in neon. By probing the atom with a low energy (below the 2s ionisation threshold) ultrashort XUV pulse, the 2p electron is steered away from the core, while the 2s electron is enabled to describe recollision trajectories. By selectively suppressing the 2p recollision trajectories we can resolve the contribution of the 2s electron to the high-harmonic spectrum. We apply the classical trajectory model to account for the contribution of the 2s electron, which allows for an intuitive understanding of the process

    Enhanced harmonic generation from Ar+ aligned with M =1

    Get PDF
    We investigate harmonic generation (HG) from ground-state Ar+ aligned with M=1 at a laser wavelength of 390-nm and intensity of 4x10(14) Wcm-2. Using time-dependent R-matrix theory, we find that an initial state with magnetic quantum number M=1 provides a 4-fold increase in harmonic yield over M=0. HG arises primarily from channels associated with the (3)Pe threshold of Ar2+, in contrast with M=0 for which channels associated with the excited, (1)De threshold dominate HG. Multichannel and multielectron interferences lead to a more marked suppression of HG for M=1 than M=0.Comment: 5 pages, 3 figures. Accepted by Phys. Rev.

    Pulse-shape control of two-color interference in high-order-harmonic generation

    Get PDF
    We report on calculations of harmonic generation by neon in a mixed (800-nm + time-delayed 400-nm) laser pulse scheme. In contrast with previous studies we employ a short (few-cycle) 400-nm pulse, finding that this affords control of the interference between electron trajectories contributing to the cutoff harmonics. The inclusion of the 400-nm pulse enhances the yield and cutoff energy, both of which exhibit a strong dependence on the time delay between the two pulses. Using a combination of time-dependent R-matrix theory and a classical trajectory model, we assess the mechanisms leading to these effects
    • …
    corecore