20 research outputs found

    Note on an Examination of the Poxwell Anticline, Dorset

    No full text

    The tumor necrosis factor superfamily members TNFSF14 (LIGHT), lymphotoxin β and lymphotoxin β receptor interact to regulate intestinal inflammation

    No full text
    Over 1.5 million individuals in the United States are afflicted with inflammatory bowel disease (IBD). While the progression of IBD is multifactorial, chronic, unresolved inflammation certainly plays a key role. Additionally, while multiple immune mediators have been shown to affect pathogenesis, a comprehensive understanding of disease progression is lacking. Previous work has demonstrated that a member of the TNF superfamily, TNFSF14 (LIGHT), which is pro-inflammatory in several contexts, surprisingly plays an important role in protection from inflammation in mouse models of colitis, with LIGHT deficient mice having more severe disease pathogenesis. However, LIGHT is a single member of a complex signaling network. It signals through multiple receptors, including herpes virus entry mediator (HVEM) and lymphotoxin beta receptor (LTβR); these two receptors in turn can bind to other ligands. It remains unknown which receptors and competing ligands can mediate or counteract the outcome of LIGHT-signaling during colitis. Here we demonstrate that LIGHT signaling through LTβR, rather than HVEM, plays a critical role in the progression of DSS-induced colitis, as LTβR deficient mice exhibit a more severe disease phenotype. Further, mice deficient in LTαβ do not exhibit differential colitis progression compared to WT mice. However, deletion of both LIGHT and LTαβ, but not deletion of both LTαβ and LTβR, resulted in a reversal of the adverse effects associated with the loss of LIGHT. In sum, the LIGHT/LTαβ/LTβR signaling network contributes to DSS colitis, but there may be additional receptors or indirect effects, and therefore, the relationships between these receptors and ligands remains enigmatic

    PD-L1 blockade engages tumor-infiltrating lymphocytes to co-express targetable activating and inhibitory receptors

    No full text
    Background The clinical benefit of immunotherapeutic approaches against cancer has been well established although complete responses are only observed in a minority of patients. Combination immunotherapy offers an attractive avenue to develop more effective cancer therapies by improving the efficacy and duration of the tumor-specific T-cell response. Here, we aimed at deciphering the mechanisms governing the response to PD-1/PD-L1 checkpoint blockade to support the rational design of combination immunotherapy. Methods Mice bearing subcutaneous MC-38 tumors were treated with blocking PD-L1 antibodies. To establish high-dimensional immune signatures of immunotherapy-specific responses, the tumor microenvironment was analyzed by CyTOF mass cytometry using 38 cellular markers. Findings were further examined and validated by flow cytometry and by functional in vivo experiments. Immune profiling was extended to the tumor microenvironment of colorectal cancer patients. Results PD-L1 blockade induced selectively the expansion of tumor-infiltrating CD4(+) and CD8(+) T-cell subsets, co-expressing both activating (ICOS) and inhibitory (LAG-3, PD-1) molecules. By therapeutically co-targeting these molecules on the T-AI cell subsets in vivo by agonistic and antagonist antibodies, we were able to enhance PD-L1 blockade therapy as evidenced by an increased number of T-AI cells within the tumor micro-environment and improved tumor protection. Moreover, T-AI cells were also found in the tumor-microenvironment of colorectal cancer patients. Conclusions This study shows the presence of T cell subsets in the tumor micro-environment expressing both activating and inhibitory receptors. These T-AI cells can be targeted by combined immunotherapy leading to improved survival

    OX40 stimulation enhances protective immune responses induced after vaccination with attenuated malaria parasites

    No full text
    Protection against a malaria infection can be achieved by immunization with live-attenuated Plasmodium sporozoites and while the precise mechanisms of protection remain unknown, T cell responses are thought to be critical in the elimination of infected liver cells. In cancer immunotherapies, agonistic antibodies that target T cell surface proteins, such as CD27, OX40 (CD134), and 4-1BB (CD137), have been used to enhance T cell function by increasing co-stimulation. In this study, we have analyzed the effect of agonistic OX40 monoclonal antibody treatment on protective immunity induced in mice immunized with genetically attenuated parasites (GAPs). OX40 stimulation enhanced protective immunity after vaccination as shown by an increase in the number of protected mice and delay to blood-stage infection after challenge with wild-type sporozoites. Consistent with the enhanced protective immunity enforced OX40 stimulation resulted in an increased expansion of antigen-experienced effector (CD11ahiCD44hi) CD8+ and CD4+ T cells in the liver and spleen and also increased IFN-γ and TNF producing CD4+ T cells in the liver and spleen. In addition, GAP immunization plus α-OX40 treatment significantly increased sporozoite-specific IgG responses. Thus, we demonstrate that targeting T cell costimulatory receptors can improve sporozoite-based vaccine efficacy
    corecore