6 research outputs found

    Arthroscopic Subtalar Arthrodesis after a Calcaneus Fracture Covered with a Forearm Flap

    Get PDF
    Surgical treatment of intraarticular calcaneal fractures is often associated with postoperative wound problems. Soft tissue necrosis, bone loss and uncontrollable infection are a challenge for the surgeon and amputation may in some cases be the ultimate solution. A free flap can be very helpful to cover a significant soft tissue defect and help in fighting the infection. However, the free flap complicates the surgical approach if subtalar arthrodesis and bone reconstruction are needed. This study demonstrates the value of an arthroscopic technique to resect the remaining articular cartilage in preparation for subtalar arthrodesis and bone grafting. This approach avoids compromising the soft tissues and minimizes damage to the free flap

    Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture

    No full text
    BACKGROUND: As the natural healing capacity of damaged articular cartilage is poor, joint surface injuries are a prime target for regenerative medicine. Characterized chondrocyte implantation uses an autologous cartilage cell therapy product that has been optimized for its biological potency to form stable cartilage tissue in vivo. PURPOSE: To determine whether, in symptomatic cartilage defects of the femoral condyle, structural regeneration with characterized chondrocyte implantation is superior to repair with microfracture. STUDY DESIGN: Randomized controlled trial; Level of evidence, 1. METHODS: Characterized chondrocyte implantation was compared with microfracture in patients with single grade III to IV symptomatic cartilage defects of the femoral condyles in a multicenter trial. Patients aged 18 to 50 years were randomized to characterized chondrocyte implantation (n = 57) or microfracture (n = 61). Structural repair was blindly assessed in biopsy specimens taken at 1 year using (1) computerized histomorphometry and (2) evaluation of overall histological components of structural repair. Clinical outcome was measured using the self administered Knee injury and Osteoarthritis Outcome Score. Adverse events were recorded throughout the study. RESULTS: Characterized chondrocyte implantation resulted in better structural repair, as assessed by histomorphometry (P = .003) and overall histologic evaluation (P = .012). Aspects of structural repair relating to chondrocyte phenotype and tissue structure were superior with characterized chondrocyte implantation. Clinical outcome as measured by the Knee injury and Osteoarthritis Outcome Score at 12 to 18 months after characterized chondrocyte implantation was comparable with microfracture at this stage. Both treatment groups had a similar mean baseline overall Knee injury and Osteoarthritis Outcome Score (56.30 +/- 13.61 and 59.53 +/- 14.95 for microfracture and characterized chondrocyte implantation, respectively), which increased in both groups to 70.56 +/- 12.39 and 72.63 +/- 15.55 at 6 months, 73.26 +/- 14.66 and 73.10 +/- 16.01 at 12 months, and 74.73 +/- 17.01 and 75.04 +/- 14.50 at 18 months, respectively. Both techniques were generally well tolerated; the incidence of adverse events after characterized chondrocyte implantation was not markedly increased compared with that for microfracture. CONCLUSION: One year after treatment, characterized chondrocyte implantation was associated with a tissue regenerate that was superior to that after microfracture. Short-term clinical outcome was similar for both treatments. The superior structural outcome may result in improved long-term clinical benefit with characterized chondrocyte implantation. Long-term follow-up is needed to confirm these findings.status: publishe
    corecore