4,594 research outputs found
Mining Event Logs to Support Workflow Resource Allocation
Workflow technology is widely used to facilitate the business process in
enterprise information systems (EIS), and it has the potential to reduce design
time, enhance product quality and decrease product cost. However, significant
limitations still exist: as an important task in the context of workflow, many
present resource allocation operations are still performed manually, which are
time-consuming. This paper presents a data mining approach to address the
resource allocation problem (RAP) and improve the productivity of workflow
resource management. Specifically, an Apriori-like algorithm is used to find
the frequent patterns from the event log, and association rules are generated
according to predefined resource allocation constraints. Subsequently, a
correlation measure named lift is utilized to annotate the negatively
correlated resource allocation rules for resource reservation. Finally, the
rules are ranked using the confidence measures as resource allocation rules.
Comparative experiments are performed using C4.5, SVM, ID3, Na\"ive Bayes and
the presented approach, and the results show that the presented approach is
effective in both accuracy and candidate resource recommendations.Comment: T. Liu et al., Mining event logs to support workflow resource
allocation, Knowl. Based Syst. (2012), http://dx.doi.org/
10.1016/j.knosys.2012.05.01
Passages in Graphs
Directed graphs can be partitioned in so-called passages. A passage P is a
set of edges such that any two edges sharing the same initial vertex or sharing
the same terminal vertex are both inside or are both outside of P. Passages
were first identified in the context of process mining where they are used to
successfully decompose process discovery and conformance checking problems. In
this article, we examine the properties of passages. We will show that passages
are closed under set operators such as union, intersection and difference.
Moreover, any passage is composed of so-called minimal passages. These
properties can be exploited when decomposing graph-based analysis and
computation problems.Comment: 8 page
Integrating computer log files for process mining: a genetic algorithm inspired technique
Process mining techniques are applied to single computer log files. But many processes are supported by different software tools and are by consequence recorded into multiple log files. Therefore it would be interesting to find a way to automatically combine such a set of log files for one process. In this paper we describe a technique for merging log files based on a genetic algorithm. We show with a generated test case that this technique works and we give an extended overview of which research is needed to optimise and validate this technique
Discovery of outpatient care process of a tertiary university hospital using process mining
Objectives: There is a need for effective processes in healthcare clinics, especially in tertiary hospitals, that consist of a set of complex steps for outpatient care, in order to provide high quality care and reduce the time cost. This study aimed to discover the potential of a process mining technique to determine an outpatient care process that can be utilized for further improvements. Methods: The outpatient event log was defined, and the log data for a month was extracted from the hospital information system of a tertiary university hospital. That data was used in process mining to discover an outpatient care process model, and then the machine-driven model was compared with a domain expert-driven process model in terms of the accuracy of the matching rate. Results: From a total of 698,158 event logs, the most frequent pattern was found to be "Consultation registration > Consultation > Consultation scheduling > Payment > Outside-hospital prescription printing" (11.05% from a total cases). The matching rate between the expert-driven process model and the machine-driven model was found to be approximately 89.01%, and most of the processes occurred with relative accuracy in accordance with the expert-driven process model. Conclusions: Knowledge regarding the process that occurs most frequently in the pattern is expected to be useful for hospital resource assignments. Through this research, we confirmed that process mining techniques can be applied in the healthcare area, and through detailed and customized analysis in the future, it can be expected to be used to improve actual outpatient care processes.open
Scalable discovery of hybrid process models in a cloud computing environment
Process descriptions are used to create products and deliver services. To lead better processes and services, the first step
is to learn a process model. Process discovery is such a technique which can automatically extract process models from event logs.
Although various discovery techniques have been proposed, they focus on either constructing formal models which are very powerful
but complex, or creating informal models which are intuitive but lack semantics. In this work, we introduce a novel method that returns
hybrid process models to bridge this gap. Moreover, to cope with today’s big event logs, we propose an efficient method, called f-HMD,
aims at scalable hybrid model discovery in a cloud computing environment. We present the detailed implementation of our approach
over the Spark framework, and our experimental results demonstrate that the proposed method is efficient and scalabl
Translating standard process models to BPEL
Standardisation of languages in the field of business process management has long been an elusive goal. Recently though, consensus has built around one process implementation language, namely BPEL, and two fundamentally similar process modelling notations, namely UML Activity Diagram (UML AD) and BPMN. This paper presents a technique for generating BPEL code from process models expressed in a core subset of BPMN and UML AD. This model-to-code translation is a necessary ingredient to the emergence of model-driven business process development environments based on these standards. The proposed translation has been implemented as an open source tool
- …