31 research outputs found

    Visual effects of wood on thermal perception of interior environments

    Get PDF
    There is a general consensus, supported by preliminary evidence, that exposed wood improves human perception of thermal comfort, though this idea has yet to be supported by meaningful effect sizes. This study sought to quantify human perception of thermal comfort of wood materials in a controlled laboratory setting. Participants experienced one of two wall treatments: exposed wooden wall panels and white-painted walls in a thermal environment set directly between "neutral” and "slightly warm” (81.5°F, 4Q%RH, PMV +Q.5). We hypothesized that participants exposed to the wood walls would gauge their thermal preference to be closer to neutral than that of participants who experienced the same thermal environment but with the white wall treatment. Wood was found to have a significant and moderate effect on thermal comfort, with the mean response of the participants who received the wood wall treatment being thermally preferable over that of the white wall (wood wall: M = Q.46, SD = Q.56; white wall: M = Q.68, SD = Q.51; p<Q.Q1)

    Evaluating Volatile Organic Compound Emissions from Cross-Laminated Timber Bonded with a Soy-Based Adhesive

    Full text link
    Volatile organic compound (VOC) emissions from indoor sources are large determinants of the indoor air quality (IAQ) and occupant health. Cross-laminated timber (CLT) is a panelized engineered wood product often left exposed as an interior surface finish. As a certified structural building product, CLT is currently exempt from meeting VOC emission limits for composite wood products and confirming emissions through California Department of Public Health (CDPH) Standard Method testing. In this study, small chamber testing was conducted to evaluate VOC emissions from three laboratory-produced CLT samples: One bonded with a new soy-based cold-set adhesive; a second bonded with a commercially available polyurethane (PUR) adhesive; and the third assembled without adhesive using dowels. A fourth commercially-produced eight-month-old sample bonded with melamine formaldehyde (MF) adhesive was also tested. All four samples were produced with Douglas-fir. The test results for the three laboratory-produced samples demonstrated VOC emissions compliance with the reference standard. The commercially-produced and aged CLT sample bonded with MF adhesive did not meet the acceptance criterion for formaldehyde of ≀9.0 ”g/m3. The estimated indoor air concentration of formaldehyde in an oïŹƒce with the MF sample was 54.4 ”g/m3; the results for the soy, PUR, and dowel samples were all at or below 2.5 ”g/m3

    Evaluating Volatile Organic Compound Emissions from Cross-Laminated Timber Bonded with a Soy-Based Adhesive

    Get PDF
    11 pagesVolatile organic compound (VOC) emissions from indoor sources are large determinants of the indoor air quality (IAQ) and occupant health. Cross-laminated timber (CLT) is a panelized engineered wood product often left exposed as an interior surface finish. As a certified structural building product, CLT is currently exempt from meeting VOC emission limits for composite wood products and confirming emissions through California Department of Public Health (CDPH) Standard Method testing. In this study, small chamber testing was conducted to evaluate VOC emissions from three laboratory-produced CLT samples: One bonded with a new soy-based cold-set adhesive; a second bonded with a commercially available polyurethane (PUR) adhesive; and the third assembled without adhesive using dowels. A fourth commercially-produced eight-month-old sample bonded with melamine formaldehyde (MF) adhesive was also tested. All four samples were produced with Douglas-fir. The test results for the three laboratory-produced samples demonstrated VOC emissions compliance with the reference standard. The commercially-produced and aged CLT sample bonded with MF adhesive did not meet the acceptance criterion for formaldehyde of ≀9.0 ÎŒg/m3. The estimated indoor air concentration of formaldehyde in an office with the MF sample was 54.4 ÎŒg/m3; the results for the soy, PUR, and dowel samples were all at or below 2.5 ÎŒg/m3.This research was funded by the U.S. Department of Agriculture’s Agricultural Research Service [USDA ARS Agreement 58-0204-6-002]

    A Novel VOC Breath Tracer Method to Evaluate Indoor Respiratory Exposures in the Near- and far-fields; implications for the spread of respiratory viruses

    Get PDF
    Background Several studies suggest that far-field transmission (\u3e6 ft) explains a significant number of COVID-19 superspreading outbreaks. Objective Therefore, quantifying the ratio of near- and far-field exposure to emissions from a source is key to better understanding human-to-human airborne infectious disease transmission and associated risks. Methods In this study, we used an environmentally-controlled chamber to measure volatile organic compounds (VOCs) released from a healthy participant who consumed breath mints, which contained unique tracer compounds. Tracer measurements were made at 0.76 m (2.5 ft), 1.52 m (5 ft), 2.28 m (7.5 ft) from the participant, as well as in the exhaust plenum of the chamber. Results We observed that 0.76 m (2.5 ft) trials had ~36–44% higher concentrations than other distances during the first 20 minutes of experiments, highlighting the importance of the near-field exposure relative to the far-field before virus-laden respiratory aerosol plumes are continuously mixed into the far-field. However, for the conditions studied, the concentrations of human-sourced tracers after 20 minutes and approaching the end of the 60-minute trials at 0.76 m, 1.52 m, and 2.28 m were only ~18%, ~11%, and ~7.5% higher than volume-averaged concentrations, respectively. Significance This study suggests that for rooms with similar airflow parameters disease transmission risk is dominated by near-field exposures for shorter event durations (e.g., initial 20–25-minutes of event) whereas far-field exposures are critical throughout the entire event and are increasingly more important for longer event durations

    The Impact of School Facilities on Student Learning and Engagement

    Get PDF
    83 pagesThis document outlines, catalogs, and summarizes a framework of literature that highlights the impact of school of facilities and classroom environments on student engagement and learning. The NetZED Laboratory at the University of Oregon commenced this project following a Request for Proposals from the California School Facilities Research Initiative (CSFRI) which sought to identify elements of the built environment of K–12 schools that result in higher levels of student engagement and learning. CSFRI’s goal was to summarize existing literature regarding the effects that physical organizational environments and furnishings within classrooms, makerspaces, laboratories, and interior ancillary facilities, as well as space at the exterior of the building that contribute to student engagement and learning. The overall intent of this white paper is to draw upon published evidence and original research to support the design planning and process for facility planners/managers, architects, educator, and community members who will seek funding to renovate and build new schools in California. With learning and engagement at the center, we developed a diagram of relationships of the school’s physical environment that includes three categories: indoor environment, spatial environment, and the people/community in relation to the school and classrooms. The review initially captured more than 750 peer-reviewed papers, reports, dissertations, books and literature reviews using framework, key word searches, and relevancy criteria, and stored through shared referencing software (Mendeley). Approximately 500 publications were selected to become an annotated bibliography and form the basis for this white paper. The review included studies from around the world, though most studies are applicable to conditions in the U.S

    Monitored Indoor Environmental Quality of a Mass Timber Office Building: A Case Study

    Get PDF
    A broad range of building performance monitoring, sampling, and evaluation was conducted periodically after construction and spanning more than a year, for an occupied office building constructed using mass timber elements such as cross-laminated timber (CLT) floor and roof panels, as well as glue-laminated timber (GLT) beams and columns. This case study contributes research on monitoring indoor environmental quality in buildings, describing one of the few studies of an occupied mass timber building, and analyzing data in three areas that impact occupant experience: indoor air quality, bacterial community composition, and floor vibration. As a whole, the building was found to perform well. Volatile organic compounds (VOCs), including formaldehyde, were analyzed using multiple methods. Formaldehyde was found to be present in the building, though levels were below most recommended exposure limits. The source of formaldehyde was not able to be identified in this study. The richness of the bacterial community was affected by the height of sampling with respect to the floor, and richness and composition was aected by the location within the building. Floor vibration was observed to be below recognized human comfort thresholds

    Understanding Flow of Energy in Buildings Using Modal Analysis Methodology

    No full text
    It is widely understood that energy storage is the key to integrating variable generators into the grid. It has been proposed that the thermal mass of buildings could be used as a distributed energy storage solution and several researchers are making headway in this problem. However, the inability to easily determine the magnitude of the building’s effective thermal mass, and how the heating ventilation and air conditioning (HVAC) system exchanges thermal energy with it, is a significant challenge to designing systems which utilize this storage mechanism. In this paper we adapt modal analysis methods used in mechanical structures to identify the primary modes of energy transfer among thermal masses in a building. The paper describes the technique using data from an idealized building model. The approach is successfully applied to actual temperature data from a commercial building in downtown Boise, Idaho
    corecore