112 research outputs found
Hyperoxemia and hypoxemia impair cellular oxygenation:a study in healthy volunteers
Introduction: Administration of oxygen therapy is common, yet there is a lack of knowledge on its ability to prevent cellular hypoxia as well as on its potential toxicity. Consequently, the optimal oxygenation targets in clinical practice remain unresolved. The novel PpIX technique measures the mitochondrial oxygen tension in the skin (mitoPO2) which allows for non-invasive investigation on the effect of hypoxemia and hyperoxemia on cellular oxygen availability. Results: During hypoxemia, SpO2 was 80 (77–83)% and PaO2 45(38–50) mmHg for 15 min. MitoPO2 decreased from 42(35–51) at baseline to 6(4.3–9)mmHg (p < 0.001), despite 16(12–16)% increase in cardiac output which maintained global oxygen delivery (DO2). During hyperoxic breathing, an FiO2 of 40% decreased mitoPO2 to 20 (9–27) mmHg. Cardiac output was unaltered during hyperoxia, but perfused De Backer density was reduced by one-third (p < 0.01). A PaO2 < 100 mmHg and > 200 mmHg were both associated with a reduction in mitoPO2. Conclusions: Hypoxemia decreases mitoPO2 profoundly, despite complete compensation of global oxygen delivery. In addition, hyperoxemia also decreases mitoPO2, accompanied by a reduction in microcirculatory perfusion. These results suggest that mitoPO2 can be used to titrate oxygen support.</p
A simulation of skin mitochondrial PO2 in circulatory shock
Circulatory shock is the inadequacy to supply mitochondria with enough oxygen to sustain aerobic energy metabolism. A novel non-invasive bedside measurement was recently introduced to monitor the mitochondrial oxygen tension in the skin (mitoPO2). As the most downstream marker of oxygen balance in the skin, mitoPO2 may provide additional information to improve shock management. However, a physiological basis for the interpretation of mitoPO2 values has not been established yet. In this paper we developed a mathematical model of skin mitoPO2 using a network of parallel microvessels, based on Krogh's cylinder model. The model contains skin blood flow velocity, heterogeneity of blood flow, hematocrit, arteriolar oxygen saturation and mitochondrial oxygen consumption as major variables. The major results of the model show that normal physiological mitoPO2 is in the range of 40-60mmHg. The relationship of mitoPO2 with skin blood flow velocity follows a hyperbolic curve, reaching a plateau at high skin blood flow velocity, suggesting that oxygen balance remains stable whilst peripheral perfusion declines. The model shows that a critical range exists where mitoPO2 rapidly deteriorates if skin perfusion further decreases. The model intuitively shows how tissue hypoxia could occur in the setting of septic shock, due to the profound impact of microcirculatory disturbance on mitoPO2, even at sustained cardiac output. MitoPO2 is the result of a complex interaction between all factors of oxygen delivery and the microcirculation. This mathematical framework can be used to interpret mitoPO2 values in shock, with the potential to enhance personalized clinical trial design.</p
International Survey on Mechanical Ventilation During Extracorporeal Membrane Oxygenation
The optimal ventilation strategy for patients on extracorporeal membrane oxygenation (ECMO) remains uncertain. This survey reports current mechanical ventilation strategies adopted by ECMO centers worldwide. An international, multicenter, cross-sectional survey was conducted anonymously through an internet-based tool. Participants from North America, Europe, Asia, and Oceania were recruited from the extracorporeal life support organization (ELSO) directory. Responses were received from 48 adult ECMO centers (response rate 10.6%). Half of these had dedicated ventilation protocols for ECMO support. Pressure-controlled ventilation was the preferred initial ventilation mode for both venovenous ECMO (VV-ECMO) (60%) and venoarterial ECMO (VA-ECMO) (34%). In VV-ECMO, the primary goal was lung rest (93%), with rescue therapies commonly employed, especially neuromuscular blockade (93%) and prone positioning (74%). Spontaneous ventilation was typically introduced after signs of pulmonary recovery, with few centers using it as the initial mode (7%). A quarter of centers stopped sedation within 3 days after ECMO initiation. Ventilation strategies during VA-ECMO focused less on lung-protective goals and transitioned to spontaneous ventilation earlier. Ventilation strategies during ECMO support differ considerably. Controlled ventilation is predominantly used initially to provide lung rest, often facilitated by sedation and neuromuscular blockade. Few centers apply "awake ECMO" early during ECMO support, some utilizing partial neuromuscular blockade.</p
International Survey on Mechanical Ventilation During Extracorporeal Membrane Oxygenation
The optimal ventilation strategy for patients on extracorporeal membrane oxygenation (ECMO) remains uncertain. This survey reports current mechanical ventilation strategies adopted by ECMO centers worldwide. An international, multicenter, cross-sectional survey was conducted anonymously through an internet-based tool. Participants from North America, Europe, Asia, and Oceania were recruited from the extracorporeal life support organization (ELSO) directory. Responses were received from 48 adult ECMO centers (response rate 10.6%). Half of these had dedicated ventilation protocols for ECMO support. Pressure-controlled ventilation was the preferred initial ventilation mode for both venovenous ECMO (VV-ECMO) (60%) and venoarterial ECMO (VA-ECMO) (34%). In VV-ECMO, the primary goal was lung rest (93%), with rescue therapies commonly employed, especially neuromuscular blockade (93%) and prone positioning (74%). Spontaneous ventilation was typically introduced after signs of pulmonary recovery, with few centers using it as the initial mode (7%). A quarter of centers stopped sedation within 3 days after ECMO initiation. Ventilation strategies during VA-ECMO focused less on lung-protective goals and transitioned to spontaneous ventilation earlier. Ventilation strategies during ECMO support differ considerably. Controlled ventilation is predominantly used initially to provide lung rest, often facilitated by sedation and neuromuscular blockade. Few centers apply "awake ECMO" early during ECMO support, some utilizing partial neuromuscular blockade.</p
Plasma Transfusion and Procoagulant Product Administration in Extracorporeal Membrane Oxygenation:A Secondary Analysis of an International Observational Study on Current Practices
OBJECTIVES: To achieve optimal hemostatic balance in patients on extracorporeal membrane oxygenation (ECMO), a liberal transfusion practice is currently applied despite clear evidence. We aimed to give an overview of the current use of plasma, fibrinogen concentrate, tranexamic acid (TXA), and prothrombin complex concentrate (PCC) in patients on ECMO.DESIGN: A prespecified subanalysis of a multicenter retrospective study. Venovenous (VV)-ECMO and venoarterial (VA)-ECMO are analyzed as separate populations, comparing patients with and without bleeding and with and without thrombotic complications. SETTING: Sixteen international ICUs.PATIENTS: Adult patients on VA-ECMO or VV-ECMO.INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Of 420 VA-ECMO patients, 59% (n = 247) received plasma, 20% (n = 82) received fibrinogen concentrate, 17% (n = 70) received TXA, and 7% of patients (n = 28) received PCC. Fifty percent of patients (n = 208) suffered bleeding complications and 27% (n = 112) suffered thrombotic complications. More patients with bleeding complications than patients without bleeding complications received plasma (77% vs. 41%, p < 0.001), fibrinogen concentrate (28% vs 11%, p < 0.001), and TXA (23% vs 10%, p < 0.001). More patients with than without thrombotic complications received TXA (24% vs 14%, p = 0.02, odds ratio 1.75) in VA-ECMO, where no difference was seen in VV-ECMO. Of 205 VV-ECMO patients, 40% (n = 81) received plasma, 6% (n = 12) fibrinogen concentrate, 7% (n = 14) TXA, and 5% (n = 10) PCC. Thirty-nine percent (n = 80) of VV-ECMO patients suffered bleeding complications and 23% (n = 48) of patients suffered thrombotic complications. More patients with than without bleeding complications received plasma (58% vs 28%, p < 0.001), fibrinogen concentrate (13% vs 2%, p < 0.01), and TXA (11% vs 2%, p < 0.01). CONCLUSIONS: The majority of patients on ECMO receive transfusions of plasma, procoagulant products, or antifibrinolytics. In a significant part of the plasma transfused patients, this was in the absence of bleeding or prolonged international normalized ratio. This poses the question if these plasma transfusions were administered for another indication or could have been avoided.</p
High-K volcanism in the Afyon region, western Turkey: from Si-oversaturated to Si-undersaturated volcanism
Volcanic rocks of the Afyon province (eastern
part of western Anatolia) make up a multistage potassic and ultrapotassic alkaline series dated from 14 to 12 Ma. The early-stage Si-oversaturated volcanic rocks around the Afyon city and further southward are trachyandesitic volcanic activity (14.23 ± 0.09 Ma). Late-stage Si-undersaturated volcanism in the southernmost part of the Afyon volcanic province took place in three episodes inferred from their stratigraphic relationships and ages. Melilite–
leucitites (11.50 ± 0.03 Ma), spotted rachyandesites, tephryphonolites and lamproites (11.91 ± 0.13 Ma) formed in the first episode; trachyandesites in the second episode and finally phonotephrites, phonolite, basaltic trachyandesites and nosean-bearing trachyandesites during the last episode.
The parameter Q [normative q-(ne + lc + kls + ol)] of western Anatolia volcanism clearly decreased southward with time becoming zero in the time interval 10–15 Ma.
The magmatism experienced a sudden change in the extent of Si saturation after 14 Ma, during late-stage volcanic activity of Afyon volcanic province at around 12 Ma, though there was some coexistence of Si-oversaturated and Si-undersaturated magmas during the whole life of Afyon volcanic province
Cost Analysis From a Randomized Comparison of Immediate Versus Delayed Angiography After Cardiac Arrest
Background In patients with out‐of‐hospital cardiac arrest without ST‐segment elevation, immediate coronary angiography did not improve clinical outcomes when compared with delayed angiography in the COACT (Coronary Angiography After Cardiac Arrest) trial. Whether 1 of the 2 strategies has benefits in terms of health care resource use and costs is currently unknown. We assess the health care resource use and costs in patients with out‐of‐hospital cardiac arrest. Methods and Results A total of 538 patients were randomly assigned to a strategy of either immediate or delayed coronary angiography. Detailed health care resource use and cost‐prices were collected from the initial hospital episode. A generalized linear model and a gamma distribution were performed. Generic quality of life was measured with the RAND‐36 and collected at 12‐month follow‐up. Overall total mean costs were similar between both groups (EUR 33 575±19 612 versus EUR 33 880±21 044; P=0.86). Generalized linear model: (β, 0.991; 95% CI, 0.894–1.099; P=0.86). Mean procedural costs (coronary angiography and percutaneous coronary intervention, coronary artery bypass graft) were higher in the immediate angiography group (EUR 4384±3447 versus EUR 3028±4220; P<0.001). Costs concerning intensive care unit and ward stay did not show any significant difference. The RAND‐36 questionnaire did not differ between both groups. Conclusions The mean total costs between patients with out‐of‐hospital cardiac arrest randomly assigned to an immediate angiography or a delayed invasive strategy were similar during the initial hospital stay. With respect to the higher invasive procedure costs in the immediate group, a strategy awaiting neurological recovery followed by coronary angiography and planned revascularization may be considered. Registration URL: https://trialregister.nl; Unique identifier: NL4857
Sex differences in patients with out-of-hospital cardiac arrest without ST-segment elevation:A COACT trial substudy
Background: Whether sex is associated with outcomes of out-of-hospital cardiac arrest (OHCA) is unclear. Objectives: This study examined sex differences in survival in patients with OHCA without ST-segment elevation myocardial infarction (STEMI). Methods: Using data from the randomized controlled Coronary Angiography after Cardiac Arrest (COACT) trial, the primary point of interest was sex differences in OHCA-related one-year survival. Secondary points of interest included the benefit of immediate coronary angiography compared to delayed angiography until after neurologic recovery, angiographic and clinical outcomes. Results: In total, 522 patients (79.1% men) were included. Overall one-year survival was 59.6% in women and 63.4% in men (HR 1.18; 95% CI: 0.761.81;p = 0.47). No cardiovascular risk factors were found that modified survival. Women less often had significant coronary artery disease (CAD) (37.0% vs. 71.3%; p < 0.001), but when present, they had a worse prognosis than women without CAD (HR 3.06; 95% CI 1.31-7.19; p = 0.01). This was not the case for men (HR 1.05; 95% CI 0.67-1.65; p = 0.83). In both sexes, immediate coronary angiography did not improve one-year survival compared to delayed angiography (women, odds ratio (OR) 0.87; 95% CI 0.58-1.30;p = 0.49; vs. men, OR 0.97; 95% CI 0.45-2.09; p = 0.93). Conclusion: In OHCA patients without STEMI, we found no sex differences in overall one-year survival. Women less often had significant CAD, but when CAD was present they had worse survival than women without CAD. This was not the case for men. Both sexes did not benefit from a strategy of immediate coronary angiography as compared to delayed strategy with respect to one-year survival
Data on sex differences in one-year outcomes of out-of-hospital cardiac arrest patients without ST-segment elevation
Sex differences in out-of-hospital cardiac arrest (OHCA) patients are increasingly recognized. Although it has been found that post-resuscitated women are less likely to have significant coronary artery disease (CAD) than men, data on follow-up in these patients are limited. Data for this data in brief article was obtained as a part of the randomized controlled Coronary Angiography after Cardiac Arrest without ST-segment elevation (COACT) trial. The data supplements the manuscript "Sex differences in out-of-hospital cardiac arrest patients without ST-segment elevation: A COACT trial substudy" were it was found that women were less likely to have significant CAD including chronic total occlusions, and had worse survival when CAD was present. The dataset presented in this paper describes sex differences on interventions, implantable-cardioverter defibrillator (ICD) shocks and hospitalizations due to heart failure during one-year follow-up in patients successfully resuscitated after OHCA. Data was derived through a telephone interview at one year with the patient or general practitioner. Patients in this randomized dataset reflects a homogenous study population, which can be valuable to further build on research regarding long-term sex differences and to further improve cardiac care. (C) 2020 The Authors. Published by Elsevier Inc
- …