17 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Searches for new phenomena in final states with 3rd generation quarks using the ATLAS detector

    No full text
    Many theories beyond the Standard Model predict new phenomena, such as heavy vectors or scalar, vector-like quarks, and leptoquarks in final states containing bottom or top quarks. Such final states offer great potential to reduce the Standard Model background, although with significant challenges in reconstructing and identifying the decay products and modeling the remaining background. The recent 13 TeV pp results, along with the associated improvements in identification techniques, will be reported

    Searches for Vector-like Quarks with the ATLAS Detector and Design of the Type-0 Services for the ITk Upgrade

    No full text
    The Standard Model (SM) of Particle Physics has enjoyed unprecedented success in describing the universe at the subatomic level. Yet, it must not be a complete theory of nature as it does not include gravity, cannot explain dark matter, provides no insight into huge hierarchies in forces and masses, and so on. Many extensions to the SM aimed at addressing these shortcomings predict the existence of a new type of particle called vector-like quarks (VLQs). This thesis presents the latest status of two searches for VLQs using the full Run 2 data set of 13 TeV pp collisions produced by the LHC and recorded by the ATLAS detector. The main focus will be on a new search for the pair-production of VLQs that each decay into a light SM quark and W boson. The second search targets top-partner VLQs produced in pairs, each VLQ then decaying to a W boson and b-quark. These represent the latest status of searches for VLQs with charged current decays with the current ATLAS detector. Looking to the future, the ATLAS detector will soon undergo an extensive upgrade in preparation for the High-Luminosity LHC, including installing a completely new, all-silicone tracking system called the Inner Tracker (ITk). This thesis highlights the development and design of the Type-0 electrical services for the all-new ITk Pixel tracking system that will lie at the heart of the upgraded ATLAS detector

    High-density high-speed service infrastructure for ATLAS ITk pixel detectors

    No full text
    As pixel channel density increases and power requirements grow, electrical services infrastructures have been challenged to keep pace. Increased levels of integration in PCBs and hybrid flex circuits have led to more complex designs with tight specifications for large currents and gigabit data transmission rates. We report on several new approaches to services integration in high-density infrastructures, designed for the ATLAS ITk pixel detector. These approaches have required design collaboration with manufacturers to realize layouts with multiple layers, exact registration, and large dimensions. Results from prototype services units show that the designs meet the stringent electrical and environmental specifications for the ITk pixel detector performance. We will also comment on design lessons learned from these collaborations

    Scapula fractures: interobserver reliability of classification and treatment

    Full text link
    OBJECTIVES:There is substantial variation in the classification and the management of scapula fractures. The first purpose of this study was to analyze the interobserver reliability of the OTA/AO and the New International Classification of scapula fractures. The second purpose was to assess the proportion of agreement among orthopaedic surgeons on operative or nonoperative treatment. DESIGN:: Web-based reliability study SETTING:: Independent orthopaedic surgeons from several countries were invited to classify scapular fractures in an online survey. PARTICIPANTS:One-hundred and three orthopaedic surgeons evaluated 35 movies of 3DCT-reconstruction of selected scapular fractures, representing a full spectrum of fracture patterns. MAIN OUTCOME MEASUREMENTS:Fleiss' kappa (κ) was used to assess the reliability of agreement between the surgeons. RESULTS:: The overall agreement on the OTA/AO Classification was moderate for the types (A, B, and C, κ = 0.54) with a 71% proportion of rater agreement (PA) as well as for the nine groups (A1 to C3, κ = 0.47) with a 57% PA. For the New International Classification, the agreement about the intra-articular extension of the fracture (Fossa (F), κ = 0.79) was substantial, the agreement about a fractured body (Body (B), κ = 0.57) or process was moderate (Process (P), κ = 0.53), however PAs were more than 81%. The agreement on the treatment recommendation was moderate (κ = 0.57) with a 73% PA. CONCLUSIONS:The New International Classification was more reliable. Body and process fractures generated more disagreement than intra-articular fractures and need further clear definitions

    Mild cognitive impairment with suspected nonamyloid pathology (SNAP): Prediction of progression.

    No full text

    Search for Scalar Diphoton Resonances in the Mass Range 6560065-600 GeV with the ATLAS Detector in pppp Collision Data at s\sqrt{s} = 8 TeVTeV

    No full text
    A search for scalar particles decaying via narrow resonances into two photons in the mass range 65–600 GeV is performed using 20.3fb120.3\text{}\text{}{\mathrm{fb}}^{-1} of s=8TeV\sqrt{s}=8\text{}\text{}\mathrm{TeV} pppp collision data collected with the ATLAS detector at the Large Hadron Collider. The recently discovered Higgs boson is treated as a background. No significant evidence for an additional signal is observed. The results are presented as limits at the 95% confidence level on the production cross section of a scalar boson times branching ratio into two photons, in a fiducial volume where the reconstruction efficiency is approximately independent of the event topology. The upper limits set extend over a considerably wider mass range than previous searches

    Observation of WWWWWW Production in pppp Collisions at s\sqrt s =13  TeV with the ATLAS Detector

    No full text
    International audienceThis Letter reports the observation of WWWWWW production and a measurement of its cross section using 139 fb1^{-1} of proton-proton collision data recorded at a center-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. Events with two same-sign leptons (electrons or muons) and at least two jets, as well as events with three charged leptons, are selected. A multivariate technique is then used to discriminate between signal and background events. Events from WWWWWW production are observed with a significance of 8.0 standard deviations, where the expectation is 5.4 standard deviations. The inclusive WWWWWW production cross section is measured to be 820±100(stat)±80(syst)820 \pm 100\,\text{(stat)} \pm 80\,\text{(syst)} fb, approximately 2.6 standard deviations from the predicted cross section of 511±18511 \pm 18 fb calculated at next-to-leading-order QCD and leading-order electroweak accuracy

    Observation of WWWWWW Production in pppp Collisions at s\sqrt s =13  TeV with the ATLAS Detector

    No full text
    International audienceThis Letter reports the observation of WWWWWW production and a measurement of its cross section using 139 fb1^{-1} of proton-proton collision data recorded at a center-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. Events with two same-sign leptons (electrons or muons) and at least two jets, as well as events with three charged leptons, are selected. A multivariate technique is then used to discriminate between signal and background events. Events from WWWWWW production are observed with a significance of 8.0 standard deviations, where the expectation is 5.4 standard deviations. The inclusive WWWWWW production cross section is measured to be 820±100(stat)±80(syst)820 \pm 100\,\text{(stat)} \pm 80\,\text{(syst)} fb, approximately 2.6 standard deviations from the predicted cross section of 511±18511 \pm 18 fb calculated at next-to-leading-order QCD and leading-order electroweak accuracy
    corecore