19 research outputs found

    Haze in Pluto's atmosphere: Results from SOFIA and ground-based observations of the 2015 June 29 Pluto occultation

    Get PDF
    On UT 29 June 2015, the occultation by Pluto of a bright star (r′ = 11.9) was observed from the Stratospheric Observatory for Infrared Astronomy (SOFIA) and several ground-based stations in New Zealand and Australia. Pre-event astrometry allowed for an in-flight update to the SOFIA team with the result that SOFIA was deep within the central flash zone (~22 km from center). Analysis of the combined data leads to the result that Pluto's middle atmosphere is essentially unchanged from 2011 and 2013 (Person et al. 2013; Bosh et al. 2015); there has been no significant expansion or contraction of the atmosphere. Additionally, our multi-wavelength observations allow us to conclude that a haze component in the atmosphere is required to reproduce the light curves obtained. This haze scenario has implications for understanding the photochemistry of Pluto's atmosphere

    Along the Channel Gradients Impact on the Spatioactivity of Gas Diffusion Electrodes at High Conversions during CO<sub>2</sub>Electroreduction

    No full text
    Results of a 2-D transport model for a gas diffusion electrode performing CO2 reduction to CO with a flowing catholyte are presented, including the concentration gradients along the flow cell, spatial distribution of the current density and local pH in the catalyst layer. The model predicts that both the concentration of CO2 and the buffer electrolyte gradually diminish along the channels for a parallel flow of gas and electrolyte as a result of electrochemical conversion and nonelectrochemical consumption. At high single-pass conversions, significant concentration gradients exist along the flow channels leading to large local variations in the current density (&gt;150 mA/cm2), which becomes prominent when compared to ohmic losses. In addition, concentration overpotentials change dramatically with CO2 flow rate, which results in significant differences in outlet concentrations at high conversions. The outlet concentration of CO attains a maximum of 80% along with 5% CO2 and 15% H2, although the maximum single-pass conversion is limited to below 60% due to homogeneous consumption by the electrolyte. Fundamental and practical implications of our findings on electrochemical CO2 reduction are discussed with a focus on the trade-off between high current density operation and high single-pass conversion efficiency. </p

    Enhanced Hydrothermal Stability of γ‑Al<sub>2</sub>O<sub>3</sub> Catalyst Supports with Alkyl Phosphonate Coatings

    No full text
    In this study, monolayers formed from organophosphonic acids were employed to stabilize porous γ-Al<sub>2</sub>O<sub>3</sub>, both as a single component and as a support for Pt nanoparticle catalysts, during exposure to hydrothermal conditions. To provide a baseline, structural changes of uncoated γ-Al<sub>2</sub>O<sub>3</sub> catalysts under model aqueous phase reforming conditions (liquid water at 200 °C and autogenic pressure) were examined over the course of 20 h. These changes were characterized by X-ray diffraction, NMR spectroscopy, N<sub>2</sub> physisorption, and IR spectroscopy. It was demonstrated that γ-alumina was rapidly converted into a hydrated boehmite (AlOOH) phase with significantly decreased surface area. Deposition of alkyl phosphonate groups on γ-alumina drastically inhibited the formation of boehmite, thereby maintaining its high specific surface area over 20 h of treatment. <sup>27</sup>Al MAS NMR spectra demonstrated that hydrothermal stability increased with alkyl tail length despite lower P coverages. Although the inhibition of boehmite formation by the phosphonic acids was attributed primarily to the formation of Al<sub>2</sub>O<sub>3</sub>–PO<sub><i>x</i></sub> bonds, it was found that use of longer-chain octadecylphosphonic acids led to the most pronounced effect. Phosphonate coatings on Pt/γ-Al<sub>2</sub>O<sub>3</sub> improved stability without adversely affecting the rate of a model reaction, catalytic hydrogenation of 1-hexene

    Along the Channel Gradients Impact on the Spatioactivity of Gas Diffusion Electrodes at High Conversions during CO<sub>2</sub>Electroreduction

    No full text
    Results of a 2-D transport model for a gas diffusion electrode performing CO2 reduction to CO with a flowing catholyte are presented, including the concentration gradients along the flow cell, spatial distribution of the current density and local pH in the catalyst layer. The model predicts that both the concentration of CO2 and the buffer electrolyte gradually diminish along the channels for a parallel flow of gas and electrolyte as a result of electrochemical conversion and nonelectrochemical consumption. At high single-pass conversions, significant concentration gradients exist along the flow channels leading to large local variations in the current density (&gt;150 mA/cm2), which becomes prominent when compared to ohmic losses. In addition, concentration overpotentials change dramatically with CO2 flow rate, which results in significant differences in outlet concentrations at high conversions. The outlet concentration of CO attains a maximum of 80% along with 5% CO2 and 15% H2, although the maximum single-pass conversion is limited to below 60% due to homogeneous consumption by the electrolyte. Fundamental and practical implications of our findings on electrochemical CO2 reduction are discussed with a focus on the trade-off between high current density operation and high single-pass conversion efficiency. Accepted Author ManuscriptChemE/Materials for Energy Conversion & Storag
    corecore