796 research outputs found

    Excursion of the Rotator Cuff Under the Acromion

    Full text link
    Nine fresh-frozen, human cadaveric shoulders were el evated in the scapular plane in two different humeral rotations by applying forces along action lines of rotator cuff and deltoid muscles. Stereophotogrammetry deter mined possible regions of subacromial contact using a proximity criterion; radiographs measured acromio humeral interval and position of greater tuberosity. Con tact starts at the anterolateral edge of the acromion at 0° of elevation; it shifts medially with arm elevation. On the humeral surface, contact shifts from proximal to dis tal on the supraspinatus tendon with arm elevation. When external rotation is decreased, distal and poste rior shift in contact is noted. Acromial undersurface and rotator cuff tendons are in closest proximity between 60° and 120° of elevation; contact was consistently more pronounced for Type III acromions. Mean acro miohumeral interval was 11.1 mm at 0° of elevation and decreased to 5.7 mm at 90°, when greater tuberosity was closest to the acromion. Radiographs show bone- to-bone relationship; stereophotogrammetry assesses contact on soft tissues of the subacromial space. Con tact centers on the supraspinatus insertion, suggesting altered excursion of the greater tuberosity may initially damage this rotator cuff region. Conditions limiting ex ternal rotation or elevation may also increase rotator cuff compression. Marked increase in contact with Type III acromions supports the role of anterior acromioplasty when clinically indicated, usually in older patients with primary impingement.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67283/2/10.1177_036354659402200609.pd

    A stereophotogrammetric method for determining in situ contact areas in diarthrodial joints, and a comparison with other methods

    Full text link
    Determination of contact areas in diarthrodial joints is necessary for understanding the state of stress within the articular cartilage layers and the supporting bony structures. The present study describes the use of a stereophotogrammetry (SPG) system [Huiskes et al., J. Biomechanics ,18, 559-570 (1985) and Ateshian et al., J. Biomechanics, 24, 761-776 (1991)] for determining contact areas in diarthrodial joints, using a surface proximity concept similar to the one used by Scherrer et al. [ASME J. biomech. Engng, 101, 271-278 (1979)]. This method consists of evaluating the proximity of the articular surfaces to determine joint contact areas using precise geometric models of the joint surfaces obtained from the SPG system, and precise kinematic data, also obtained from SPG. In this study, the SPG method for determining contact areas is compared to other commonly used methods such as dye staining, silicone rubber casting and Fuji film contact measurement techniques which have been often used and reported by other investigators. The bovine glenohumeral joint and the bovine lateral tibiofemoral articulation (without the meniscus) were used to represent congruent and incongruent joints, respectively. While all the methods yielded consistent contact patterns for the incongruent tibiofemoral articulations, the results for the congruent bovine glenohumeral joints showed that the SPG and Fuji film methods were in better agreement than those obtained from the dye staining and silicone rubber casting methods. The advantages of the new SPG method are that it can be used for intact joints, and used repeatedly and quickly thus making contact-area movement analyses possible [Soslowsky et al., J. orthop. Res., 10, 524-534 (1992)]. The results of this comparison study show that the SPG technique is a reliable and versatile method for determining contact areas in diarthrodial joints.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31887/1/0000839.pd

    Reducing controls noise in gravitational wave detectors with interferometric local damping of suspended optics

    Get PDF
    Control noise is a limiting factor in the low-frequency performance of the LIGO gravitational wave detectors. In this paper we model the effects of using new sensors called HoQIs to control the suspension resonances. We show if we were to use HoQIs, instead of the standard shadow sensors, we can suppress resonance peaks up to tenfold more while simultaneously reducing the noise injected by the damping system. Through a cascade of effects this will reduce the resonant cross-coupling, allow for improved stability for feed-forward control, and result in improved sensitivity of the detector in the 10-20 Hz band. This analysis shows that local sensors such as HoQIs should be used in current and future detectors to improve low-frequency performance.Comment: RSI Accepted manuscript, 9 pages, 8 figure

    A Vacuum-Compatible Cylindrical Inertial Rotation Sensor with Picoradian Sensitivity

    Full text link
    We describe an inertial rotation sensor with a 30-cm cylindrical proof-mass suspended from a pair of 14-ÎĽ{\mu}m thick BeCu flexures. The angle between the proof-mass and support structure is measured with a pair of homodyne interferometers which achieve a noise level of $\sim 5\ \text{prad}/\sqrt{\text{Hz}}$. The sensor is entirely made of vacuum compatible materials and the center of mass can be adjusted remotely

    The Impact of Biomechanics in Tissue Engineering and Regenerative Medicine

    Full text link
    Biomechanical factors profoundly influence the processes of tissue growth, development, maintenance, degeneration, and repair. Regenerative strategies to restore damaged or diseased tissues in vivo and create living tissue replacements in vitro have recently begun to harness advances in understanding of how cells and tissues sense and adapt to their mechanical environment. It is clear that biomechanical considerations will be fundamental to the successful development of clinical therapies based on principles of tissue engineering and regenerative medicine for a broad range of musculoskeletal, cardiovascular, craniofacial, skin, urinary, and neural tissues. Biomechanical stimuli may in fact hold the key to producing regenerated tissues with high strength and endurance. However, many challenges remain, particularly for tissues that function within complex and demanding mechanical environments in vivo. This paper reviews the present role and potential impact of experimental and computational biomechanics in engineering functional tissues using several illustrative examples of past successes and future grand challenges.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78125/1/ten.teb.2009.0340.pd

    A Cryogenic Silicon Interferometer for Gravitational-wave Detection

    Get PDF
    The detection of gravitational waves from compact binary mergers by LIGO has opened the era of gravitational wave astronomy, revealing a previously hidden side of the cosmos. To maximize the reach of the existing LIGO observatory facilities, we have designed a new instrument that will have 5 times the range of Advanced LIGO, or greater than 100 times the event rate. Observations with this new instrument will make possible dramatic steps toward understanding the physics of the nearby universe, as well as observing the universe out to cosmological distances by the detection of binary black hole coalescences. This article presents the instrument design and a quantitative analysis of the anticipated noise floor

    Accelerating lattice reduction with FPGAs

    Get PDF
    International audienceWe describe an FPGA accelerator for the Kannan­–Fincke­–Pohst enumeration algorithm (KFP) solving the Shortest Lattice Vector Problem (SVP). This is the first FPGA implementation of KFP specifically targeting cryptographically relevant dimensions. In order to optimize this implementation, we theoretically and experimentally study several facets of KFP, including its efficient parallelization and its underlying arithmetic. Our FPGA accelerator can be used for both solving stand-alone instances of SVP (within a hybrid CPU­–FPGA compound) or myriads of smaller dimensional SVP instances arising in a BKZ-type algorithm. For devices of comparable costs, our FPGA implementation is faster than a multi-core CPU implementation by a factor around 2.12

    Gravitational Waves From Known Pulsars: Results From The Initial Detector Era

    Get PDF
    We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom
    • …
    corecore