4 research outputs found

    In silico identification and experimental validation of PmrAB targets in Salmonella typhimurium by regulatory motif detection

    Get PDF
    BACKGROUND: The PmrAB (BasSR) two-component regulatory system is required for Salmonella typhimurium virulence. PmrAB-controlled modifications of the lipopolysaccharide (LPS) layer confer resistance to cationic antibiotic polypeptides, which may allow bacteria to survive within macrophages. The PmrAB system also confers resistance to Fe(3+)-mediated killing. New targets of the system have recently been discovered that seem not to have a role in the well-described functions of PmrAB, suggesting that the PmrAB-dependent regulon might contain additional, unidentified targets. RESULTS: We performed an in silico analysis of possible targets of the PmrAB system. Using a motif model of the PmrA binding site in DNA, genome-wide screening was carried out to detect PmrAB target genes. To increase confidence in the predictions, all putative targets were subjected to a cross-species comparison (phylogenetic footprinting) using a Gibbs sampling-based motif-detection procedure. As well as the known targets, we detected additional targets with unknown functions. Four of these were experimentally validated (yibD, aroQ, mig-13 and sseJ). Site-directed mutagenesis of the PmrA-binding site (PmrA box) in yibD revealed specific sequence requirements. CONCLUSIONS: We demonstrated the efficiency of our procedure by recovering most of the known PmrAB-dependent targets and by identifying unknown targets that we were able to validate experimentally. We also pinpointed directions for further research that could help elucidate the S. typhimurium virulence pathway

    Chemical synthesis of (S)-4,5-Dihydroxy-2,3-pentanedione, a bacterial signal molecule precursor, and validation of its activity in Salmonella typhimurium

    No full text
    We describe an original, short, and convenient chemical synthesis of enantiopure (S)-4,5-dihydroxy-2,3-pentanedione (DPD), starting from commercial methyl (S) (∼)-2,2-dimethyl-1,3-dioxolane-4-carboxylate. DPD is the precursor of autoinducer (AI)-2, the proposed signal for bacterial interspecies communication. AI-2 is synthesized by many bacterial species in three enzymatic steps. The last step, a LuxS-catalyzed reaction, leads to the formation of DPD, which spontaneously cyclizes into AI-2. AI-2-like activity of the synthesized molecule was ascertained by the Vibrio harveyi bioassay. To further validate the biological activity of synthetic DPD and to explore its potential in studying DPD (AI-2)-mediated signaling, a Salmonella typhimurium luxS mutant was constructed. Expression of the AI-2 regulated lsr operon can be rescued in this luxS mutant by addition of synthetic DPD or genetic complementation. Biofilm formation by S. typhimurium has been reported to be defective in a luxS mutant, and this was confirmed in this study to test DPD for chemical complementation. However, biofilm formation of the luxS mutant cannot be restored by addition of DPD. In contrast, introduction of luxS under control of its own promoter complemented biofilm formation. Further results demonstrated that biofilm formation of the luxS mutant cannot be restored with luxS under control of the strong nptII promoter. This indicates that altering the intrinsic promoter activity of luxS affects Salmonella biofilm formation. Conclusively, we synthesized biologically active DPD. Using this chemical compound in combination with genetic approaches opens new avenues in studying AI-2- mediated signaling.status: publishe

    Chemical synthesis of (S)-4,5-dihydroxy-2,3-pentanedione, a bacterial signal molecule precursor, and validation of its activity in Salmonella Typhimurium

    No full text
    We describe an original, short, and convenient chemical synthesis of enantiopure (S)-4,5-dihydroxy-2,3-pentanedione (DPD), starting from commercial methyl (S) (∼)-2,2-dimethyl-1,3-dioxolane-4-carboxylate. DPD is the precursor of autoinducer (AI)-2, the proposed signal for bacterial interspecies communication. AI-2 is synthesized by many bacterial species in three enzymatic steps. The last step, a LuxS-catalyzed reaction, leads to the formation of DPD, which spontaneously cyclizes into AI-2. AI-2-like activity of the synthesized molecule was ascertained by the Vibrio harveyi bioassay. To further validate the biological activity of synthetic DPD and to explore its potential in studying DPD (AI-2)-mediated signaling, a Salmonella typhimurium luxS mutant was constructed. Expression of the AI-2 regulated lsr operon can be rescued in this luxS mutant by addition of synthetic DPD or genetic complementation. Biofilm formation by S. typhimurium has been reported to be defective in a luxS mutant, and this was confirmed in this study to test DPD for chemical complementation. However, biofilm formation of the luxS mutant cannot be restored by addition of DPD. In contrast, introduction of luxS under control of its own promoter complemented biofilm formation. Further results demonstrated that biofilm formation of the luxS mutant cannot be restored with luxS under control of the strong nptII promoter. This indicates that altering the intrinsic promoter activity of luxS affects Salmonella biofilm formation. Conclusively, we synthesized biologically active DPD. Using this chemical compound in combination with genetic approaches opens new avenues in studying AI-2- mediated signaling
    corecore