158 research outputs found

    Log-Density Deconvolution by Wavelet Thresholding

    Get PDF
    This paper proposes a new wavelet-based method for deconvolving a density. The estimator combines the ideas of nonlinear wavelet thresholding with periodised Meyer wavelets and estimation by information projection. It is guaranteed to be in the class of density functions, in particular it is positive everywhere by construction. The asymptotic optimality of the estimator is established in terms of rate of convergence of the Kullback-Leibler discrepancy over Besov classes. Finite sample properties is investigated in detail, and show the excellent empirical performance of the estimator, compared with other recently introduced estimators.deconvolution, wavelet thresholding,adaptive estimation

    Nonparametric Beta Kernel Estimator for Long Memory Time Series

    Get PDF
    The paper introduces a new nonparametric estimator of the spectral density that is given in smoothing the periodogram by the probability density of Beta random variable (Beta kernel). The estimator is proved to be bounded for short memory data, and diverges at the origin for long memory data. The convergence in probability of the relative error and Monte Carlo simulations suggest that the estimator automaticaly adapts to the long- or the short-range dependency of the process. A cross-validation procedure is also studied in order to select the nuisance parameter of the estimator. Illustrations on historical as well as most recent returns and absolute returns of the S&P500 index show the reasonable performance of the estimation, and show that the data-driven estimator is a valuable tool for the detection of long-memory as well as hidden periodicities in stock returns.spectral density, long rage dependence, nonparametric estimation

    Nonparametric Beta kernel estimator for long memory time series

    Get PDF
    The paper introduces a new nonparametric estimator of the spectral density that is given in smoothing the periodogram by the probability density of Beta random variable (Beta kernel). The estimator is proved to be bounded for short memory data, and diverges at the origin for long memory data. The convergence in probability of the relative error and Monte Carlo simulations suggest that the estimator automaticaly adapts to the long- or the short-range dependency of the process. A cross-validation procedure is also studied in order to select the nuisance parameter of the estimator. Illustrations on historical as well as most recent returns and absolute returns of the S&P500 index show the reasonable performance of the estimation, and show that the data-driven estimator is a valuable tool for the detection of long-memory as well as hidden periodicities in stock returns.spectral density, long range dependence, nonparametric estimation, periodogram, kernel smoothing, Beta kernel, cross-validation

    Consistent Density Deconvolution under Partially Known Error Distribution

    Get PDF
    We estimate the distribution of a real-valued random variable from contaminated observations. The additive error is supposed to be normally distributed, but with unknown variance. The distribution is identifiable from the observations if we restrict the class of considered distributions by a simple condition in the time domain. A minimum distance estimator is shown to be consistent imposing only a slightly stronger assumption than the identification condition.deconvolution, error measurement, density estimation

    Iterative Regularization in Nonparametric Instrumental Regression

    Get PDF
    We consider the nonparametric regression model with an additive error that is correlated with the explanatory variables. We suppose the existence of instrumental variables that are considered in this model for the identification and the estimation of the regression function. The nonparametric estimation by instrumental variables is an illposed linear inverse problem with an unknown but estimable operator. We provide a new estimator of the regression function using an iterative regularization method (the Landweber-Fridman method). The optimal number of iterations and the convergence of the mean square error of the resulting estimator are derived under both mild and severe degrees of ill-posedness. A Monte-Carlo exercise shows the impact of some parameters on the estimator and concludes on the reasonable finite sample performance of the new estimator.Nonparametric estimation; Instrumental variable; Ill-posed inverse problem

    Iterative regularization in nonparametric instrumental regression

    Get PDF
    We consider the nonparametric regression model with an additive error that is correlated with the explanatory variables. We suppose the existence of instrumental variables that are considered in this model for the identification and the estimation of the regression function. The nonparametric estimation by instrumental variables is an ill-posed linear inverse problem with an unknown but estimable operator. We provide a new estimator of the regression function using an iterative regularization method (the Landweber-Fridman method). The optimal number of iterations and the convergence of the mean square error of the resulting estimator are derived under both mild and severe degrees of ill-posedness. A Monte-Carlo exercise shows the impact of some parameters on the estimator and concludes on the reasonable finite sample performance of the new estimator.nonparametric estimation, instrumental variable, ill-posed inverse problem, iterative method, estimation by projection

    Forecasting the Malmquist Productivity Index

    Get PDF
    The Malmquist Productivity Index (MPI) suggests a convenient way of measuring the productivity change of a given unit between two consequent time periods. Until now, only a static approach for analyzing the MPI was available in the literature. However, this hides a potentially valuable information given by the evolution of productivity over time. In this paper, we introduce a dynamic procedure for forecasting the MPI. We compare several approaches and give credit to a method based on the assumption of circularity. Because the MPI is not circular, we present a new decomposition of the MPI, in which the time-varying indices are circular. Based on that decomposition, a new working dynamic forecasting procedure is proposed and illustrated. To construct prediction intervals of the MPI, we extend the bootstrap method in order to take into account potential serial correlation in the data. We illustrate all the new techniques described above by forecasting the productivityt index of 17 OCDE countries, constructed from their GDP, labor and capital stock.Malmquist Productivity Index, circularity efficiency, smooth bootstrap

    Identification and estimation by penalization in nonparametric instrumental regression

    Get PDF
    The nonparametric estimation of a regression function x from conditional moment restrictions involving instrumental variables is considered. The rate of convergence of penalized estimators is studied in the case where x is not identified from the conditional moment restriction. We also study the gain of modifying the penalty in the estimation, considering for instance a Sobolev-type of penalty. We analyze the effect of this modification on the rate of convergence of the estimator and on the identification of the regression function x.instrumental variable, nonparametric estimation, ill-posed inverse problem, identification, penalized estimator, Tikhonov regularization, Sobolev norm

    Nonparametric Frontier Estimation from Noisy Data

    Get PDF
    A new nonparametric estimator of production a frontier is defined and studied when the data set of production units is contaminated by measurement error. The measurement error is assumed to be an additive normal random variable on the input variable, but its variance is unknown. The estimator is a modification of the m-frontier, which necessitates the computation of a consistent estimator of the conditional survival function of the input variable given the output variable. In this paper, the identification and the consistency of a new estimator of the survival function is proved in the presence of additive noise with unknown variance. The performance of the estimator is also studied through simulated data.
    corecore