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This paper studies the estimation of a nonparametric function ϕ from the inverse
problem r = T ϕ given estimates of the function r and of the linear transform T .
We show that rates of convergence of the estimator are driven by two types of as-
sumptions expressed in a single Hilbert scale. The two assumptions quantify the
prior regularity of ϕ and the prior link existing between T and the Hilbert scale. The
approach provides a unified framework that allows us to compare various sets of
structural assumptions found in the econometric literature. Moreover, general upper
bounds are also derived for the risk of the estimator of the structural function ϕ as
well as that of its derivatives. It is shown that the bounds cover and extend known
results given in the literature. Two important applications are also studied. The first
is the blind nonparametric deconvolution on the real line, and the second is the esti-
mation of the derivatives of the nonparametric instrumental regression function via
an iterative Tikhonov regularization scheme.

1. INTRODUCTION

A wide range of econometric problems are related to the identification and esti-
mation of a nonparametric function ϕ from a structural model

r = T ϕ, (1.1)
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where r and T are a function and a linear operator, respectively, that are known
or can be estimated from observations.

One important example of such a problem is given when ϕ is a density function
that solves the convolution equation

r(y) = ϕ � f (y) :=
∫ ∞
−∞

f (y −u)ϕ(u)du, (1.2)

where r and f are two other density functions. Such an equation arises when the
density ϕ has to be estimated from a sample that is contaminated by an additive
measurement error with probability density f . Here the function r represents the
density of the contaminated observation, and the linear operator T is the convolu-
tion with f . Examples of economic applications can be found, e.g., in Horowitz
(1998), Postel-Vinay and Robin (2002), and Bonhomme and Robin (2010).

Another example of the model (1.1) is the given when ϕ is the solution of the
moment equation

E[Y |W ] = E[ϕ(Z)|W ], (1.3)

where Y is a dependent variable, Z is a vector of endogenous explanatory vari-
ables, and W is a vector of instruments. In the setting of (1.1), the function r is
the conditional expectation E[Y |W ] of the response Y given the instruments W,
and the operator T is the conditional expectation operator, i.e., T ϕ =E[ϕ(Z)|W ].
Identification and nonparametric estimation of ϕ have been the subject of many
recent economic studies; see, e.g., Darolles, Florens, and Renault (2002), Hall and
Horowitz (2005), Blundell, Chen, and Kristensen (2007), Chen and Reiss (2011),
and other references below.

A common task in the above problems is to analyze the accuracy of an esti-
mator of ϕ, for example, its mean square convergence. In the literature, rates of
convergence are derived under various assumptions on ϕ, r , or T , or on the data
generating process involved in the specific problem. To summarize, three kinds of
a priori assumptions are usually considered in the literature: (i) a function class
on the solution ϕ, (ii) a smoothness class for the density of the observations, and
(iii) a regularity condition on the operator T .

The first two types of assumptions are usual in nonparametric estimation, in
which it is assumed that ϕ or the densities belong to some space of smooth func-
tions, such as a Hölder or a Sobolev space. In the context of inverse problems
in econometrics, some works also consider the prior that ϕ belongs to a compact
space; see, e.g., Newey and Powell (2003) and the discussion on that assump-
tion in Florens, Johannes, and Van Bellegem (2005). Several conditions of type
(iii) were proposed in the literature, among which are the sieve measure of ill-
posedness (e.g., Blundell et al., 2007) and the source condition (e.g., Carrasco,
Florens, and Renault, 2007). In Hall and Horowitz (2005), the regularity of the
operator, assumed to be compact, is directly expressed by the rate of decrease of
its discrete spectrum.
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It is not easy to compare the recent results in the econometric literature because
they are derived under various combinations of those three assumptions. A main
objective of the present paper is to provide a unification of the results that allows
this comparison. We show that rates of convergence are essentially driven by two
assumptions, both written in a common Hilbert scale. The definition of Hilbert
scale and our two structural assumptions are explained in Section 2.

Under those two assumptions, the central results of the paper are risk bounds
for the estimation of ϕ and its derivatives when r and possibly T are unknown and
estimated from data. Those results are proved in a setting that is general enough
to be applied to a wide range of ill-posed linear problems in econometrics (such
as the above deconvolution and instrumental regression problems). They are also
proved to be “practical,” meaning that, when applied to particular econometric
models, they allow us to derive new rates of convergence and extend significantly
some results of the literature. In the paper, we illustrate that point, and we now
summarize some of those results.

First, we address as an example the nonparametric estimation of the deconvolu-
tion density ϕ from the convolution equation (1.2) when the observation’s density
r on the left-hand side in (1.2) and the error density f are unknown but estimated
from data. That setting is sometimes called “blind deconvolution,” as the density
of the error is not assumed to be known. Although it is a more realistic setting, its
study has surprisingly not yet been considered in econometrics, as far as we know.
We provide a new estimator (the double-threshold deconvolution estimator) of ϕ
and of the s first derivatives of ϕ, and derive its rate of convergence under various
conditions on f and ϕ (e.g., under ordinary or supersmooth conditions as Fan,
1991, defines it). A remarkable result is the rate of convergence of the derivative
of ϕ when both ϕ and f are supersmooth (see Proposition 3.2 below). It is also
worth mentioning that we do not assume that the deconvolution density ϕ or the
error density is compactly supported. In particular, the model allows that variables
are normally distributed.

Another result is given by the introduction of a new estimator of the derivatives
of ϕ from the instrumental model (1.3). As far as we know, there is no published
paper studying an estimator of that quantity. To achieve fast rates of convergence,
the estimator is regularized by the iterative Tikhonov method. Explicit rates of
convergence are given under various regularity conditions (see Proposition 4.1
below) and are proved to extend to derivative estimation the rates found, e.g.,
in Hall and Horowitz (2005) and Chen and Reiss (2011).

The paper is organized as follows: In the next section we define and give
examples of Hilbert scale. We state the two central assumptions under which the
main results are proved, and make explicit connection with the literature. Then our
study is divided into two cases. In Section 3 we consider the situation where the
eigenfunctions of T are known. As we show below, a natural thresholding estimator
can be defined. The deconvolution problem (1.2) is an example of that case, where
the eigenfunctions of T are given by the Fourier exponentials. Then in Section
4 we study the most general case where the eigenfunctions of T are not known.
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In that case there is no natural estimator, and we discuss various regularization
schemes. The estimation of a nonparametric instrumental regression from (1.3)
is an example of the second case. Technical proofs are in the Appendix.

2. STRUCTURAL ASSUMPTIONS

2.1. Hilbert Scale

The two sufficient assumptions needed in order to derive the mean square conver-
gence of estimators are both written in a given Hilbert scale. As it is a new concept
in econometrics,1 we recall its basic construction and give some intuitive exam-
ples below. For a complete exposition we refer, e.g., to Krein and Petunin (1966).

A Hilbert scale is a sequence of embedded Hilbert spaces defining the a priori
smoothness assumptions of the problem. The simplest example is given by the
sequence of spaces of differentiable functions, which constitutes an embedded
sequence of regularity spaces indexed by the degree of smoothness. As we will
see below, other examples are also useful.

A rigorous construction of a Hilbert scale involves the definition of an operator
B : H → H that is unbounded, self-adjoint, and strictly positive, and where H is
a Hilbert space (very often H = L2(R) or L2[0,1]). The Hilbert scale generated
by B is then the sequence of spaces (Hq)q∈R, where Hq =D(Bq/2) is the domain
of Bq/2.

In our example of differentiable functions, B is the second-order derivative,
and the condition g ∈ Hq simply means that g has q derivatives. However, as we
will clarify below, some econometric papers do not characterize the regularity of
ϕ with respect to the order of derivative. In Section 2.4 we explain why it may
also be useful to consider an operator B other than the second-order derivative to
generate the regularity spaces.

It is also worth mentioning that q is not necessarily an integer or a positive
number, and that the above definition holds for q ∈R. Note also that the spaces Hq

are again Hilbert spaces with the natural inner product 〈g,h〉q := 〈Bq/2g, Bq/2h〉
and induced norm ‖g‖q := ∥∥Bq/2g

∥∥.
The two examples that follow expand the case of differentiable functions.

Example 2.1 ((Sobolev spacesWq(R)Wq(R)Wq(R)))
Let H = L2(R) be the space of square integrable functions defined on R. Con-
sider the subsetWq(R) of H containing only functions g with square integrable
qth derivative g(q). This subset is called a Sobolev space, and the (Wq(R))q is
a Hilbert scale. A rigorous definition of that scale necessitates the correspond-
ing operator B in the Fourier domain. Denote by F the Fourier transform on R,
and define B as Bg(ω) = F−1β(ω)Fg(ω), where F−1 is the inverse Fourier
transform and β(ω) = (1+ω2). One can show that this operator B generates the
above sequence of Sobolev spaces (cf. Mair and Ruymgaart, 1996, Sect. 4, for a
complete exposition). The induced norm is equivalent to the usual Sobolev norm
‖g‖2 +‖g(q)‖2 = ∫

(1+ω2)q |Fg(ω)|2dω.
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Example 2.2 ((Sobolev spaces of periodic functionsWq([0,1]))Wq([0,1]))Wq([0,1])))
In analogy to the previous example, consider the space Wq [0,1] of periodic
functions on the interval [0,1] with square integrable qth derivative . The se-
quence (Wq [0,1])q is also a Hilbert scale generated now by the operator Bg :=
∑j βj 〈g,φj 〉φj , where βj := (1 + (2 j)2) and {φ1 ≡ 1,φ2k(x) = √

2cos(2πkx),

φ2k+1(x) = √
2sin(2πkx),k ∈N} is the trigonometric basis (cf. Neubauer, 1988).

One advantage of using Hilbert scales is the simplicity by which we derive
the rate of convergence of the derivative of the estimator. To illustrate that point,
let g ∈ Wq(R) and suppose we want to estimate its sth derivative g(s). From
standard theory, it holds that [Fg(s)](ω) = (ιω)s[Fg](t), t ∈R, where F denotes
the Fourier transform and ι2 = −1. Now we introduce the function gs = Bs/2g,
where B is defined in Example 2.1. By simple calculation, it holds that ‖g(s)‖ =
‖Fg(s)‖� ‖gs‖. Therefore, if ĝ denotes some estimator of g, then the risk of the
estimator ĝs = Bs/2ĝ provides an upper bound for the risk of (ĝ)(s).

Remark 2.1. Examples 2.1 and 2.2 can be extended in order to characterize
also subsets of analytic functions. One possibility is to set β(ω) := exp(|ω|2γ ) in
the first example or βj = exp(| j |2γ ) in the second, for some γ > 1/2 (cf. Kawata,
1972). Subsets of nondifferentiable functions can also be generated using, e.g.,
the Haar-basis {φj } in the second example instead of the trigonometric basis.

2.2. A Priori Regularity of ϕϕϕ

In non- and semiparametric econometrics, it is standard to assume that the func-
tion to be estimated belongs to some known space of regularity. The idea is similar
for inverse problems, but the difficulty in econometrics is that it is not natural to
impose conditions on ϕ independently of the behavior of T . That is why the con-
ditions on ϕ and T will be formulated with respect to a common Hilbert scale.
Below we show that our conditions, expressed in Hilbert scale, contain (and ex-
tend) many of the various assumptions that are used in the literature.

Consider a Hilbert scale (Hq)q∈R generated by an operator B. The assumption
below determines our prior on ϕ.

Assumption 2.1. The solution ϕ of the inverse problem (1.1) belongs to Hp for
some p > 0.

In the case where (Hq) is the scale of derivable functions (as in Example 2.1),
this assumption simply states that the solution has p square integrable derivatives.

2.3. Link Condition

Suppose the function ϕ satisfies Assumption 2.1 for a given p > 0 and a Hilbert
scale (Hq)q∈R. Our second fundamental assumption makes a link between the
prior regularity of ϕ and the mapping properties of T .
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Assumption 2.2. If ϕ ∈ Hp, p > 0, then there exists a continuous, strictly in-
creasing function κ :R+ →R

+ with κ(0+) = 0 such that, for some finite constant
d ≥ 1, the operator T satisfies

‖g‖−p /d ≤ ∥∥κ(T ∗T )g
∥∥ ≤ d ‖g‖−p for all g ∈ H . (2.1)

To understand how that assumption quantifies the regularity of T , consider
again the case where (Hq) is the scale of differentiable functions (as in Exam-
ple 2.1) and suppose T is a smoothing operator. For instance, suppose that T is
smoothing one time; that is, there exists one more derivative of T g than of g. An-
other way to express that relation is to assume that the norm of ‖T g‖ is equivalent
to the norm2 of ‖B−1/2g‖. In the notations of Assumption 2.2 we equivalently
write3 ‖(T �T )1/2g‖ � ‖g‖−1. Now, if we assume that the solution ϕ has, e.g.,
three derivatives, that is, p = 3 in Assumption 2.1, then it is easy to verify that
condition (2.1) holds with κ(t) = t3/2.

The last assumption therefore quantifies the relative regularity of T with respect
to the regularity of ϕ. That relative regularity is characterized by the function κ .
As we will see in the applications below, the link function κ essentially determines
the bound for the risk and hence the rate of convergence.

In the case where we are interested in estimating the derivatives of ϕ, the
above assumption has to be slightly modified. Consider again the scale of Sobolev
spaces introduced in Example 2.1. Our target function now is ϕs = Bs/2ϕ for some
0 � s < p, where p determines the prior number of existing derivatives of ϕ by
Assumption 2.1. If we rewrite the initial problem as

r = T ϕ = T B−s/2 Bs/2ϕ = Tsϕs (2.2)

with obvious definition for Ts , we again see how Hilbert scales easily handle
the problem of estimating the derivative. Assumption 2.2 is thus extended to the
assumption below.

Assumption 2.3. If ϕ ∈ Hp, p > 0, then, for 0 ≤ s < p, there exists a continu-
ous, strictly increasing function κ :R+ →R

+ with κ(0+) = 0 such that, for some
finite constant d ≥ 1, the operator T satisfies

‖g‖s−p /d ≤ ∥∥κ(T ∗
s Ts)g

∥∥ ≤ d ‖g‖s−p for all g ∈ H . (2.3)

Once again, we look at Example 2.1 above to illustrate that assumption. If the
true function ϕ is three times differentiable, that is, p = 3 in Assumption 2.1; if
we are interested by the first derivative of ϕ, that is, s = 1; and if the operator T
is smoothing one time, then it is easy to check that Ts is smoothing two times and
condition (2.1) holds with κ(t) = t1/2.

2.4. Connection with the Literature

Before stating our main results, we link the above conditions with the most stan-
dard notions and assumptions that have been used before in the econometric
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literature on inverse problems. As far as we know, the existing literature in econo-
metrics only covers the case s = 0, therefore we concentrate our discussion on
that situation. In the next section we derive results for s � 0, that is, we are able
to derive rates of convergence for the derivatives of ϕ.

If the Hilbert scale is given by the Sobolev spaces, we already mentioned that
Assumption 2.1 is equivalent to assume that ϕ has p derivatives. Moreover, if the
link function takes the form κ(t) = t p/2a , we recover the case where T is said
to be finitely smoothing (as named in Natterer, 1984). In the particular example
of the convolution equation (1.2) this case corresponds to the ordinary smoothing
condition of Fan (1991), i.e., |Fϕ(t)|2 � |t |−2a . In the instrumental regression
model (1.3) with a compact operator T , it similarly imposes that the eigenvalues
of T are decreasing at a polynomial rate. This case was considered in Hall and
Horowitz (2005, Sect. 4.2).

Assuming a finitely smoothing T is sometimes too restrictive. For example, in
the convolution equation (1.2) it does not cover the case where the error density
is super smooth, i.e., |F f (t)|2 � exp(−|t |2a). We recover the case where T is
infinitely smoothing if we set κ(t) = | log(t)|−p/2a in Assumption 2.2 (e.g., Mair,
1994). In the instrumental regression model (1.3), surprisingly there is no pub-
lished paper considering that case as far as we know. However, that case is very
natural since it covers the situation where (Y, Z ,W ) are jointly normal.

Assumptions 2.1 and 2.2 also recover the source condition often used in nu-
merical analysis, and that has been considered in the nonparametric instrumental
regression problem, e.g., in Darolles et al. (2002) and Hall and Horowitz (2005,
Sect. 4.1). That setting is covered if the Hilbert scale is generated by the operator
B = (T �T )−1 and the link function is κ = t p/2. As before, a polynomial link func-
tion is restrictive because it assumes strong conditions on the distribution func-
tions involved in the instrumental regression problem. That was the motivation to
consider a logarithmic link function in Johannes et al. (2011).

Finally, in recent work, Chen and Reiss (2011) established minimax risk lower
bounds for the nonparametric instrumental regression model under similar as-
sumptions to the above Assumptions 2.1 and 2.2. We recover their rate of conver-
gence as a particular case (see the discussion of Proposition 4.1 in Section 4).

Table 1 summarizes the above connections.

TABLE 1. Connections between particular Hilbert scales and various types of
assumptions used in the literature

Hilbert scale Hp κ(t) = t p/2a κ(t) = | log(t)|−p/2a

Given by Sobolev spaces ϕ is p-times differentiable, ϕ is p-times differentiable,
T is finitely smoothing T is infinitely smoothing
with degree of smoothness a for every a

Generated by B = (T �T )−1 Source condition Log source condition
with a = 1 with a = 1
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3. RISK BOUNDS IN CASE OF KNOWN EIGENFUNCTIONS

3.1. Eigenfunctions

In this section we derive a risk bound in the particular case where the operator
B defining the Hilbert scale, and the operator T have the same set of eigenfunc-
tions. The general case will be discussed in the next section. However, the case
where those operators share the same eigenfunctions is already of interest in some
econometrics problems. The deconvolution problem is one example, as we will
see later.

As suggested by the referee, since our main example is the deconvolution prob-
lem (1.2) on R, we simplify the exposition and assume in this section that the
eigenfunctions are given by the Fourier exponentials. The case of general eigen-
functions is a straightforward extension (see Remark 3.1).

The nice point when eigenfunctions are known is that a natural estimator of
ϕ will be defined by a series estimator in the system of eigenfunctions. Let F
be the Fourier transform on R. In this setting the structural model (1.1) implies
that Fr(·) = λ(·)Fϕ, where λ(·) is the Fourier spectrum of T (e.g., the Fourier
transform of the error density, f , in the convolution case (1.2)).

Moreover, since the eigenfunctions of T are the Fourier exponential, it is nat-
ural to consider the Hilbert scale of Sobolev spaces, which is defined in Exam-
ple 2.1. Recall that the operator B generating that scale is such that for all g,
FBg(ω) = β(ω)Fg(ω), where β(ω) = (1+ω2). In that setting the link condition
(2.3) can be rewritten as a link between the Fourier transform of T (given by λ(·))
and the Fourier transform of B:

βs−p(·) � κ(λ2(·)/βs(·))2 (3.1)

almost surely. In order to show how this setting simplifies the estimation problem
of ϕs (that is, the sth derivative of ϕ), we go back to the inverse problem r = Tsϕs ,
see (2.2). The decomposition implies after straightforward calculations that

Fϕs(·) = βs/2(·)
λ(·) Fr(·) (3.2)

almost surely. This shows that in case of a priori known eigenfunctions, the esti-
mation of ϕs is reduced to the estimation of the Fourier spectrum λ(·) of T , and
the unknown function Fr(·). That idea is developed next.

3.2. Risk Bound When the Spectrum Is Known

First we show a direct proof for a risk bound when the Fourier spectrum λ is
known. In deconvolution, it means that the error density, f , is known and only
an estimator F̂r of the function Fr is required. Due to the ill-posedness of the
inverse problem, it is well known that replacing the unknown function Fr in (3.2)
by its estimator generally will not lead to a consistent estimator of ϕs . Therefore
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we introduce a threshold that exploits the link condition (3.1). An estimator ϕ̃s of
ϕs is then given by the inverse Fourier transform of

F ϕ̃s(·) = βs/2(·)
λ(·) F̂r(·)I{βs−p(·)� dκ(δ∗)2} . (3.3)

The next proposition shows that the rate of convergence of the estimator is driven
by the link function κ .

PROPOSITION 3.1. Let F̂r be an estimator of Fr such that E|F̂r −Fr |2 �
cη uniformly over μa.e. for some c > 0. Under Assumptions 2.1 and 2.3, if the
threshold δ∗ := δ∗(η) satisfies

D−1 � η

κ(δ∗)2

∥∥∥∥∥ I{β(·)s−p � d κ(δ∗)2}√
�(β(·)s−p/d)

∥∥∥∥∥
2

� D, (3.4)

where � is the inverse function of κ(·)2, then there exists a constant C � 1 only

depending on D, d, and c such that E
∥∥ϕ̃s −ϕs

∥∥2 � C ·κ(δ∗)2 ·max(‖ϕ‖2
p ,1).

Proof. Define the regularized solution ϕα
s := F−1[Fϕs I{βs−p � d κ(δ∗)2}]

and consider the usual decomposition of the risk in a bias and a variance term:

E
∥∥ϕ̃s −ϕs

∥∥2 � 2E‖ϕ̃s −ϕα
s ‖2 +2‖ϕα

s −ϕs‖2.

Using that F and F−1 have norm one, and with equation (3.2), the first term
of the right-hand side is bounded by 2cη‖I{βs−p/d � κ(δ∗)2}βs/2/λ‖2. Now,
due to the link condition (3.1) we have βs−p/d � κ(λ2/βs)2, which implies
βs/λ2 � 1/�

(
βs−p/d

)
by definition of the function �. Therefore the first term is

bounded by 2cη‖I{βs−p/d � κ(δ∗)2}/�1/2
(
βs−p/d

)‖2. Since the second term is
bounded by

2d κ(δ∗)2
∥∥∥β(p−s)/2FϕsI{βs−p/d < κ2(δ∗)}

∥∥∥2
� 2d κ(δ∗)2 ‖ϕ‖2

p ,

we obtain that

E
∥∥ϕ̃s −ϕs

∥∥2 � 2c d κ(δ∗)2

⎧⎨⎩ η

κ(δ∗)2

∥∥∥∥∥ I{β(·)s−p � d κ(δ∗)2}√
�(β(·)s−p/d)

∥∥∥∥∥
2

+1

⎫⎬⎭
×max(‖ϕ‖2

p ,1).

Therefore the constraint (3.4) on δ∗ implies the result, which completes the
proof. n

We show in the application below that κ(δ∗)2 is the minimax-optimal rate of
convergence. First we consider the extension of the result to the case where the
spectrum λ is unknown and hence has to be estimated.
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3.3. Risk Bound When the Spectrum Is Unknown

In some situations, the spectrum λ is unknown but can be estimated. In decon-
volution, it means that the density of the error f is unknown (see the appli-
cation in Section 3.4 below). In that case, there exist estimators F̂r and λ̂ of
Fr and λ, respectively. As in the previous section, replacing the unknown
spectrum λ by its estimator in (3.3) does not lead to a consistent estimator of ϕs .
Therefore we introduce a second threshold α in order to control the decay
of λ̂ to 0 (even if λ is far away from 0, its estimator λ̂ can be very small).
Thereby a natural estimator ϕ̂s of ϕs is given by the inverse Fourier trans-
form of

F ϕ̂s(·) := βs/2(·)
λ̂(·) F̂r I{βs−p(·)� dκ2(δ∗)} I{λ̂(·)2

/βs(·)� α}. (3.5)

The choice of the thresholds δ∗ and α are discussed in the next result.

THEOREM 3.1. Let F̂r and λ̂ be estimators of Fr and λ, respectively, such
that the inequalities

E|F̂r −Fr |4 � c1η
2, (3.6)

E|λ̂−λ|4 � c2τ
2 (3.7)

hold true uniformly over μa.e. for some η,τ > 0 and c1,c2 � 1. Under Assump-
tions 2.1 and 2.3, if the estimator ϕ̂s is defined with a threshold δ∗ := δ∗(η)
such that (3.4) holds for some D � 1, and if the second threshold satisfies α =
max(δ∗/4,τ ), then

E
∥∥ϕ̂s −ϕs

∥∥2 � C{κ(δ∗)2 +max(κ(τ)2,τ )} ·max(‖ϕ‖2
p ,1),

where C is a strictly positive constant only depending on κ , c1, c2, d, and D.

Because the proof involves some technical parts, it is deferred to Appendix A.1.
We show below that this bound is minimax in an important application. Theo-

rem 3.1 surprisingly shows that the choice of the second threshold parameter α is
automatic from the optimal choice of the first threshold δ∗. Moreover, the optimal
δ∗ in Theorem 3.1 is identical to the one in Proposition 3.1 where the spectrum λ
is known.

Remark 3.1. In this technical remark we argue that, in the most general case
where the eigenfunctions are not necessarily the Fourier exponentials, the results
are extended by using the spectral decomposition of the operator T ∗T . Accord-
ing to the spectral theorem (cf. Halmos, 1963), there exists a measurable function
λ2 defined on some measure space (�,B,μ) with values in the spectrum of T ∗T
and unitary mapping4 U : H → L2

μ(�) such that U T ∗T U−1g = λ2 g, μ a.e., for
all g ∈ L2

μ(�). Moreover, there exists a partial isometry V : G → L2
μ(�) such
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that V T U−1g = λg, μ a.e., for all g ∈ L2
μ(�). In the deconvolution problem, U

and V are the Fourier transform. In that setting, assuming that B has the same
eigenfunctions, we write U BU−1g = β g, μ a.e., for every g with the same uni-
tary operator U and some measurable function β with values in the spectrum of
B. A strong connection is therefore assumed between the Hilbert scale and the
inverse problem, and that connection is modeled by the existence of the common
operator U in the above spectral decompositions.

3.4. Application 1: Deconvolution on RRR with Unknown Error
Distribution

We illustrate the above theorem by an application to density estimation with mea-
surement error. The problem arises when we want to estimate the density ϕ of a
random variable X that is observed with a contamination by some independent
additive noise of density f . The observational model is Y = X + ε, where the
density of the observation Y , r(y), satisfies r = f �ϕ; see also (1.2). A majority
of papers assume the density f to be known, which is convenient in theory but
may not be realistic in practice.

In the following application we do not assume the density of the error to be
known. General results on estimation and identification in that setting may be
found in Schwarz and Van Bellegem (2010). Below we assume to observe an
i.i.d. sample of the error distribution. That sample allows us to estimate the error
density, and hence it is of interest to analyze the impact of this estimation on the
rate of convergence of the resulting deconvolution estimator. That situation has
been considered in Neumann (1997) and Johannes (2009). An application of The-
orem 3.1 in that setting will show new optimal results on the rate of convergence
that was not covered by this literature.

Suppose we observe an i.i.d. sample Y1, . . . ,Yn generated from the distribution
r and another i.i.d. sample ε1, . . . ,εm from f . In the convolution model (1.2), the
operator to be inverted is the convolution with f .

From the observations, we consider the estimators F̂r(ω) = (n
√

2π)−1

∑n
j=1 exp(−ιωYj ) and F̂ f (ω) = (m

√
2π)−1 ∑m

j=1 exp(−ιωεj ). In order to
apply Theorem 3.1, we first need to check conditions (3.6) and (3.7) on the
estimators F̂r and F̂ f . These conditions are fulfilled since, by application of
Petrov (1995, Thm. 2.11), there exists a positive constant C > 0 such that
supω∈RE|[F̂r ](ω) − [Fr ](ω)|4 � C/n2 and supω∈RE|[F̂ f ](ω) − [F f ](ω)|4
� C/m2.

As recalled in Section 2.4, rates of convergence of the deconvolution estimator
are usually derived assuming that ϕ is ordinary smooth and under two sets of
assumptions on F f , namely, F f is ordinary or supersmooth. Those conditions
are covered in our setting if one consider the scale of Sobolev spaces and various
link functions κ (cf. Table 1). Therefore, suppose ϕ belongs to Wp(R) and we

want to estimate the sth derivative f (s)
X of ϕ. Following the general approach, we
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propose a new double threshold deconvolution estimator (DTDE) given by

ϕ̂(s) := F−1

[
(ιω)s F̂r(ω)√

2πF̂ f (ω)
I{(1+ω2)s−p � κ2(δ∗)}

× I{|F̂ f (ω)|2 � α(1+ω2)s}
]

, (3.8)

where δ∗ := δ∗(n) and α∗(n,m) are two thresholds that decrease to zero as the
sample sizes n and m increase.

PROPOSITION 3.2. In the convolution model r = f � ϕ with unknown f ,
assume ϕ ∈Wp(R) for some p > 0 and consider the DTDE estimator (3.8) of the
sth derivative of ϕ for 0� s < p.

(i) Let f be ordinary smooth, i.e., |F f |2 � (1 + t2)−a, a > 0. Consider the
thresholds κ(δ∗) � n−2(p−s)/(2(p+a)+1) and α � max(n−2(a+s)/(2(p+a)+1),
m−1). Then we have

E‖ϕ̂(s) −ϕ(s)‖2 = O
(

n−2(p−s)/(2(p+a)+1) +m−(1∧(p−s)/(a+s))
)
.

(ii) Let f be supersmooth, i.e., |F f |2 � exp(−|t |2a), a > 0. Consider the
thresholds κ2(δ)∗ � (logn)−(p−s)/a and α � max(n−c,m−1), c > 0. Then
we have

E‖ϕ̂(s) −ϕ(s)‖2 = O
(
(logn)−(p−s)/a + (logm)−(p−s)/a

)
.

Proof. Observe that in case (i) Assumption 2.3 is satisfied with κ2(t) =
|t |(p−s)/(a+s) and hence �(t) = |t |(a+s)/(p−s). The well-known approximation∫ T
−T |t |r dt � T r+1 for r > 0 together with the definition of β implies∫ T

−T
1/�(β(t)s−p/d)dt � |T |2(a+s)+1.

Define T ∗ by δ∗ =: �(β(T ∗)s−p/d). It follows that the condition on δ∗ given in
(3.4) of Proposition 3.1 can be rewritten as

1/n � |β(T ∗)|s−p
∣∣∣∣∫ T ∗

−T ∗
1/�(β(t)s−p/d)dt

∣∣∣∣−1

� |T ∗|−2(p+a)−1. (3.9)

Thereby, we have δ∗ � n−2(a+s)/[2(a+p)+1] and κ(δ∗) � n−2(p−s)/[2(p+a)+1]. Con-
sequently, the result follows by applying Theorem 3.1.

In case (ii) Assumption 2.3 is satisfied with κ2(t) = | log t |−(p−s)/a and hence
�(t) = exp(−|t |a/(s−p)). By applying Laplace’s method (cf. Olver, 1974, Ch.
3.7) we have

∫ T
−T 1/�(β(t)s−p/d)dt � exp(|T |2a) � 1/�(β(T )s−p). Hence, the

condition on δ∗ writes now

1/n � |β(T ∗)|s−p�(β(T ∗)s−p),
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which implies κ(δ∗) � ω(1/n), where ω denotes the inverse function of ω−1(t) =
t ·�(t). Since ω(t) = | log t |−(p−s)/a(1+o(1)) as t → 0 (cf. Mair, 1994), we con-
clude κ2(δ∗) � | logn|−(p−s)/a and hence δ∗ � n−c for some sufficiently small c.
The bound follows from Theorem 3.1. n

The last proposition establishes the minimax-optimality of the DTDE in case of
an ordinary and supersmooth error density under much milder assumptions than
the one used in Neumann (1997) or Johannes (2009). However, other cases of
interest are not considered in the literature, as, for example, the case where ϕ and
f are both supersmooth (e.g., if they are Gaussian or Cauchy). In this situation,
following Assumption 2.1, ϕ belongs to Hp(R), p > 0, with β(t) = exp(|t |2γ ),
2γ > 0 (see Example 2.1), and the DTDE of ϕ writes

ϕ̂ := F−1

[
F̂r(ω)√

2πF̂ f (ω)
I{exp(−p|ω|2γ )� κ2(δ∗)} I{|F̂ f (ω)|2 � α}

]
. (3.10)

PROPOSITION 3.3. Consider the convolution model r = f � ϕ with super-
smooth ϕ, i.e., ϕ ∈ Hp(R), p > 0, with β(t) = exp(|t |2γ ), 2γ > 0, and
unknown supersmooth f , i.e., |F f |2 � exp(−|t |2a), with a > γ . Let DTDE esti-
mator (3.10) of ϕ be defined by using thresholds κ(δ∗) � exp(−p| logn|γ /a) and
α � max(n−c,m−1), c > 0, then we have

E‖ϕ̂(s) −ϕ(s)‖2 = O
(

exp(−p| logn|γ/a)+ exp(−p| logm|γ/a)
)
.

Proof. Assumption 2.3 is satisfied with κ2(t) = exp(−p| log t |−γ/a) and hence
�(t) = exp(−p−a/γ | log t |a/γ ). Then by applying Laplace’s method, the condi-
tion on δ∗ can be rewritten as in (3.9). Consider first the case γ < a, then from
(3.9) we obtain κ(δ∗) � exp(−p| logn|γ/a) and hence δ∗ � n−c for some suffi-
ciently small c. Therefore, the bound follows from Theorem 3.1, which proves
the result. n

4. GENERAL RISK BOUNDS

In the most general case, the eigenfunctions of the operator T in (1.1) are un-
known, in contrast to the setting of the previous section. As a consequence, there
is no natural orthonormal system that simplifies the problem to equation (3.2),
and the threshold estimator is no longer the natural regularized estimator. In order
to address the question of deriving rates of convergence, we first clarify the notion
of regularized estimator.

4.1. Regularized Estimator

In order to estimate the function ϕ in (1.1), it is first necessary to estimate the
operator T and the function r . The estimator of course depends on the particular
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inverse problem we are faced with (deconvolution, nonparametric instrumental
regression, etc.). In the following, we do not intend to discuss the quality of these
estimators, except that we give some considerations in our applications. Instead,
we suppose in the main results that estimators T̂ , T̂s , r̂ of T , Ts , r are given, where
Ts = T B−s/2 and T̂s = T̂ B−s/2.

It is well known that the ill-posedness of equation (1.1) implies that a consis-
tent estimator of ϕ is not found by a simple inversion of the estimated operator
T̂s . A modification of the inversion, called regularization, is always necessary.
We follow the notations of Tautenhahn (1996) and consider a general continuous
regularization scheme in Hilbert scale given by

ϕ̂s = gα(T̂s
�
T̂s)T̂s

�
r̂ , (4.1)

where the function gα : (0,c] → R is the regularization scheme that is a piece-
wise continuous function such that limα→0+ gα(t) = 1/t . Note that, in contrast to
Tautenhahn, the regularization scheme (4.1) covers the general case where the op-
erator T is not necessarily known. The following example recalls that the regular-
ization methods usually considered in econometrics are characterized by various
functions gα .

Example 4.1

(i) The Tikhonov regularization is characterized by gα(t) = 1/(t + α), and
the corresponding regularized estimator is the solution of the minimal pe-
nalized contrast problem

min
φ∈Hs

∥∥∥T̂sφ − r̂
∥∥∥2 +α ‖φ‖2

s .

(ii) A generalization of the previous example is given by the Tikhonov reg-
ularization of order m. It is given by gα(t) = (1 − (α/(t + α))m)/t and
m � 1. The regularized estimator ϕ̂s := ϕ̂s,m is the solution of the m itera-
tive minimizations

ϕ̂s, j = argmin
φ∈Hs

∥∥∥T̂sφ − r̂
∥∥∥2 +α

∥∥φ − ϕ̂s, j−1
∥∥2

s , j = 1, . . . ,m, ϕ̂s,0 = 0.

(iii) The spectral cut-off considers gα(t) = 1/t for t ≥ α.

(iv) The Landweber iteration procedure takes gα(t) = (1− (1− t)1/α)/t .

The Tikhonov regularization is the most widely used regularization scheme in
econometrics. Iterative Tikhonov is less used, and will be considered in an ap-
plication below (Section 4.3). In the deconvolution problem presented above we
have used the spectral cut-off (see also, e.g., Carrasco and Florens, 2011; Cavalier
and Hengartner, 2005; or Bigot and Van Bellegem, 2009). The Landweber itera-
tive regularization scheme is specifically studied in the context of nonparametric
instrumental regression in Johannes et al. (2011).
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4.2. Main Results

In this section we show that the assumption on the prior assumption on ϕ and the
link condition, both conveniently expressed in a single Hilbert scale, are sufficient
to derive an upper bound for the mean square convergence of the regularized
estimator. Before stating the result, we introduce a restriction on the regularization
scheme.

Assumption 4.1. There exist positive constants c1 and c2 such that

sup
t>0

t1/2|gα(t)| ≤ c1/
√

α, sup
t>0

|tgα(t)| ≤ 1,

sup
t>0

t |1− tgα(t)| ≤ c2α sup
t>0

|1− tgα(t)| ≤ 1.

That type of assumption can already be found in Nair, Pereverzev, and
Tautenhahn (2005) and leads to substantial simplifications in the proof. Note that
the Tikhonov, order m Tikhonov, and spectral cut-off regularization fulfil these
constraints, but the Landweber iteration procedure does not. Deriving the upper
bound for the latter thus needs another proof technique, which can be found in
Johannes et al. (2010).

THEOREM 4.1. Under Assumptions 2.1 and 2.3 for a given concave link func-
tion κ(·), if the regularization scheme satisfies Assumption 4.1, then, for all α > 0,
the risk bound

E
∥∥ϕ̂s −ϕs

∥∥2 � C

{
α−1

E

∥∥∥r̂ − T̂ ϕ
∥∥∥2 +κ

(
α +

√
E‖T̂ − T ‖4

)}
holds true for a strictly positive, finite constant C.

The last upper bound is a sum of two terms. The first term plays the role of a
variance term and the second is a bias term. In fact, if the approximation error of
the operator is sufficiently small (additional restrictions on the class of possible
operators are needed for this), the bound becomes α−1

E‖r̂ −T ϕ‖2 +κ(α), which
is the upper bound that is found when the operator is known and does not have to
be estimated. That bound is known to be optimal (Nair et al., 2005).

Moreover, under our assumptions the bound of the first term cannot be im-
proved. (To see this, we can consider a deconvolution problem, where it is straight-
forward to show that an appropriate choice of α the upper bound provides the
optimal rate of convergence.) However, under more specific assumptions on the
stochastic structure of the inverse problem, the bound of the variance can be im-
proved. A detailed discussion with several examples can be found in Bissantz,
Hohage, Munk, and Ruymgaart (2007).

The risk bound is derived under the assumption that the function κ is concave.
That constraint can be relaxed at the price of a more restrictive connection be-
tween κ and the regularization scheme gα , leading to an alternative upper bound.
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THEOREM 4.2. Under the conditions of Theorem 4.1 where we no longer as-
sume the function κ to be concave, if we assume instead that there exists cκ > 0
such that

sup
t>0

{
κ(t)(1− tgα(t))1/2

}
� cκ ·κ(α), (4.2)

then, for all α > 0, the inequality

E
∥∥ϕ̂s −ϕs

∥∥2 � C

{
1

α
E

∥∥∥r̂ − T̂ ϕ
∥∥∥2 +κ(α)+E

∥∥∥κ(T̂ �
s T̂s)−κ(T �

s Ts)
∥∥∥2

}
is satisfied for a strictly positive, finite constant C.

The first two terms of the upper bound involve the regularization parameter
α. An optimal choice of α depending on ‖r̂ − T̂ ϕ‖ allows us to balance the two
terms. The last term of the inequality involves the deviation between κ(T̂ �

s T̂s) and
κ(T �

s Ts), which can be simplified in some situations.
To illustrate that simplification, consider the case s = 0 and the source condition

assumption for which Assumption 2.1 reduces to ‖(T �T )−p/2ϕ‖ < ∞, and the
degree of ill-posedness (Assumption 2.1) is satisfied with κ(t) ≡ t p/2. In this
mildly ill-posed problem, the following inequality due to Egger (2005) can be
used:∥∥∥(T̂ �T̂ )p/2 − (T �T )p/2

∥∥∥2
� C

(
‖T̂ − T ‖2min(1,p) +‖T̂ − T ‖2p

)
.

Therefore the last term of the above risk is of order (E‖T̂ − T ‖2p)min(1,1/p).
For severely ill-posed problems where Assumption 2.1 holds with κ(t) ≡

| log(t)|−p/2, the following result proved in Hohage (2000) is useful in order to
bound the risk:∥∥∥κ(T̂ �T̂ )−κ(T �T )

∥∥∥2
� C

{
κ2

(∥∥∥T̂ �T̂ − T �T
∥∥∥)+

∥∥∥T̂ �T̂ − T �T
∥∥∥} .

Therefore the last term of the above risk is of order E(| log(‖T̂ − T ‖)|−p).

4.3. Application 2: Nonparametric Instrumental Regression

We illustrate the main result in the popular model of nonparametric instrumental
regression (1.3) in the case H = L2[0,1] (cf. Hall and Horowitz, 2005, Sect. 4.2,
for a detailed exposition). In the following, a new risk bound is derived from the
previous results, in the case where r and T are estimated by the method of sieve
and the regularization scheme is the iterative Tikhonov regularization.

From an i.i.d. sample (Yi , Zi ,Wi ), i = 1, . . . ,n, consider estimators of r and T
constructed by projection on the trigonometric basis {φj }j (see Example 2.2) that
are not necessarily the eigenfunctions of T . An orthogonal series estimator of r is
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given by

r̂(·) =
k

∑
j=1

r̂ jφj (·), (4.3)

where r̂j = n−1 ∑n
i=1 Yiφj (Wi ), j = 1, . . . ,k. The number k of estimated coef-

ficients increases as the sample size n increases. In order to derive a series es-
timator of T , denote φφφ(·) = (φ1(·), . . . ,φk(·))′. Then a series estimator of T is
given by

T̂ g := φφφ′M̂〈g,φφφ〉, (4.4)

where M̂ := n−1 ∑n
i=1φφφ(Wi )φφφ(Zi )

′ and 〈g,φφφ〉 denotes the column vector
(〈g,φ1〉, . . . , 〈g,φk〉)′. The estimator of T � is the dual of T̂ ; that is, T̂ �h :=
φφφ′M̂ ′〈h,φφφ〉 where analogously 〈h,φφφ〉 := (〈h,φ1〉, . . . , 〈h,φk〉)′. We also define the
vector v̂ := 1

n ∑n
i=1 Yiφφφ(Wi ) such that the series estimator (4.3) of r can be written

r̂ = ψψψ ′v̂ .
Suppose the prior on ϕ is described by using the Sobolev spaces (Wq [0,1])q .

For s � 0, consider the Tikhonov regularization scheme of order � (cf. Exam-
ple 4.1). If we define the diagonal matrix ∇s := Diag[(ι)s, (2ι)s . . . , (kι)s], the
order-�-iterated Tikhonov regularized estimator, ϕ̂(s) := φφφ′ϕ̂(s)

� , is computed by
solving the � linear equations

(M̂ ′M̂ +α∇s)ϕ̂
(s)
j = M̂ ′v̂ +α∇s ϕ̂

(s)
j−1, j = 1, . . . ,�, ϕ̂

(s)
0 = 0. (4.5)

PROPOSITION 4.1. Assume ϕ ∈Wp([0,1]) for some p > 0 and that the link
condition (Assumption (2.3)) holds with the scale of Sobolev spaces in L2[0,1].
Consider the estimator (4.5) of the sth derivative of ϕ for 0� s < p.

(i) Suppose the operator T is finitely smoothing, that is, κ(t) = t (p−s)/2(a+s),
and suppose T̂ is such that E‖T̂ −T ‖2(1∨(p−s)/(a+s)) = O(n−2τ/(2τ+1)) for
some τ > (p +a). If � ≥ (p − s)/(a + s), then

E‖ϕ̂s −ϕs‖2 = O(n−2(p−s)/(2(a+p)+1)).

(ii) Suppose the operator T is infinitely smoothing, that is, κ(t) =
| log(t)|−(p−s)/2a. Then

E‖ϕ̂(s) −ϕ(s)‖2 = O((logn)−(p−s)/a).

Proof. The proof is a straightforward application of Theorem 4.1. When T

is finitely smoothing, we use E
∥∥r̂ − r

∥∥2 = O(n−2(p+a)/(2(p+a)+1)) and E‖T̂ −
T ‖2[1∨(p−s)/(a+s)] = O(n−2τ/(2τ+1)) for some τ > 0; see Hall and Horowitz
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(2005). The result follows using τ > p +a. When T is infinitely smoothing, one
can show that E‖T̂ − T ‖4 = O(n−2τ ′/(2τ ′+1)) and E‖r̂ − r‖2 = O(n−2τ/(2τ+1))
for some τ > 0 and τ ′ > 0. n

The rates given in Proposition 4.1 are new in the context of nonparametric in-
strumental regression. Case (i) covers Theorem 4.1 of Hall and Horowitz (2005)
as a particular case (with p = β −1/2 and α = 2a in their notations). Incidentally,
observe that it relaxes some of the Hall and Horowitz constraints on the regularity
parameters. In case s = 0, Theorem 5.3 of Chen and Reiss (2011) derives sim-
ilar upper bounds of a sieve least square estimator. In addition, Proposition 4.1
establishes the rate of convergence of the derivatives (s > 0).

As a final remark, we recall that the non-iterated Tikhonov regularization is
known to lead to suboptimal rates of convergence when ϕ is too regular (the so-
called “saturation effect” of that regularization scheme; see, e.g., Florens et al.,
2011). As highlighted by the last proposition, iterative Tikhonov regularization
does not have this limitation. Moreover, when T is infinitely smoothing, there is
no constraint on the number of iterations in order to derive the rate of convergence.
According to Proposition 4.1, a single iteration is sufficient in order to reach the
logarithmic risk.

NOTES

1. Assumptions on Hilbert scales were also considered in Chen and Reiss (2011) and Florens et al.
(2011).

2. Here recall that B is the second order-derivative. A fractional operator is easily defined in the
Fourier domain using the setting of Example 2.1. In the notations of the example, Bq is defined
by Bq g(ω) = F−1β(ω)qFg(ω). Intuitively speaking, B−1/2 is the first-order integral of g, which
indeed has one more derivative than g. Therefore B−1/2g is smoother than g itself.

3. The following convention is used: ‖u‖ � ‖v‖ means that there exists a constant d ≥ 1 such that
‖v‖/d � ‖u‖� d ‖v‖.

4. L2
μ(�) is the Hilbert space of square integrable functions defined on (�,B,μ) endowed with

inner product 〈 f,g〉L2
μ(�) = ∫

f g dμ.
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APPENDIX

A.1. Proof of Theorem 3.1. We present a proof in the general case where the eigen-
functions are not necessarily the Fourier transform; see Remark 3.1 for notations. In the
setting of the theorem, we consider U = V = F .

The general estimator writes

U ϕ̂s := βs/2

λ̂
V̂ r I{βs−p/d � κ2(δ∗)} I{̂λ2/βs � α}, (A.1)

and we work under the assumption that V̂ r and λ̂ are estimators of V r and λ, respectively,
such that the inequalities

E|V̂ r − V r |4 � c1η2, (A.2)

E|λ̂−λ|4 � c2τ2 (A.3)

hold true uniformly over μa.e. for some η,τ > 0 and c1,c2 � 1.
In the following, we will use the notations

λs := β−s/2λ, λ̂s := β−s/2λ̂, and

ϕ̂α
s := U−1

I{βs−p � d κ2(δ∗)}I{̂λ2
s � α}Uϕs . (A.4)

We also need to introduce the function �(τ ), which is defined for every τ > 0 by

�(τ ) := sup
t∈�

{
βs−p(t) ·min

( τ

�(βs−p(t)/d)
,1
)}

, (A.5)

where � denotes the inverse function of κ2.

LEMMA A.1. There exists a constant C � 1 depending only on κ such that �(τ ) for
all τ ∈ (0,�(1/d)] satisfies

1/(C d)�max(κ2(τ ),τ )/�(τ )� C d.

Proof. Consider the upper bound. Taking t0 such that βs−p(t0) = dκ2(τ ) implies that
�(τ )� βs−p(t0) = dκ2(τ ). On the other hand, since β(t)� 1 for all t ∈ �, we have

�(τ ) = d τ sup
u∈(0,1]

{
u ·min

( 1

�(u)
,

1

τ

)}
� d τ

1

�(1)
,

which proves the upper bound. Consider now the lower bound. We distinguish between two
cases: There exists a constant C � 1 such that for all τ ∈ (0,�(1)], either (i) supt∈[τ,�(1)]
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κ2(t)/t � C or (ii) supt∈[τ,�(1)] κ
2(t)/t � Cκ2(τ )/τ . Note, if κ2(t)/t = O(1) as t → 0,

then we are in case (i) and otherwise in (ii). Then due to the monotonicity of κ we have

�(τ ) = d τ max

(
sup

u∈(0,τ ]

κ2(u)

τ
, sup

u∈[τ,�(1)])

κ2(u)

u

)
= d τ sup

u∈[τ,�(1)])

κ2(u)

u
.

Thereby, in case (i) we have �(τ )� Cτ , while in case (ii) it follows that �(τ )� Cκ2(τ ),
which proves the lower bound and hence completes the proof. n

LEMMA A.2. Suppose that ϕ ∈ Hp for some p > 0 and that for some 0 � s < p,
there exists an index function κ satisfying the link condition (2.3) for some constant d ≥ 1.
Consider ϕ̂α

s given in (A.4), where the estimator λ̂ of λ satisfies E|λ̂−λ|2 � cτ , for some
c > 0. If in addition the threshold δ∗ is defined by (3.4) and α := max(τ,δ∗/4), then there
exists a constant C � 1 only depending on d and c such that

E
∥∥ϕ̂α

s −ϕs
∥∥2 � C · {κ(δ∗)2 +�(τ )} · ‖ϕ‖2

p · (A.6)

Proof. Let ϕα
s := U−1

I{βs−p � d κ(δ∗)2}Uϕs . Then the proof is based on the decom-
position E‖ϕ̂α

s −ϕs‖2 � 2‖ϕα
s −ϕs‖2 +2E‖ϕ̂α

s −ϕα
s ‖2. We show the following bound:

E‖ϕ̂α
s −ϕα

s ‖2 � C�(τ )‖ϕ‖2
p. (A.7)

Combining (A.7) with the estimate ‖ϕα
s −ϕs‖2 � d κ2(δ∗)‖ϕ‖2

p obtained in the proof of
Proposition 3.1, we obtain the result.

For the proof of (A.7) consider the identity

E
∥∥ϕ̂α

s −ϕα
s
∥∥2 =

∫
�

|Uϕs |2I{βs−p � d κ(δ∗)2}P(λ̂2
s < α)dμ.

Below we show that for some positive constant C only depending on d and c,

I{βs−p � dκ2(δ∗)}P(λ̂2
s < α)� C ·min(τ/�(bs−p/d),1). (A.8)

Therefore, we can write E‖ϕ̂α
s −ϕα

s ‖2 �C ·sup�{βs−p min(τ/�(βs−p/d),1)} ·∫� β p−s

|Uϕs |2dμ, which implies (A.7) by definition of �(τ ).
For the proof of (A.8) we consider two cases.
(i) Let α = δ∗/4. The condition βs−p � dκ2(δ∗) together with 3.1 implies λ2

s � δ∗ = 4α

and hence P(λ̂2
s < α)� P(2|λ̂s −λs |� λs). The Markov inequality implies P(λ̂2

s < α)�
c τ/�(βs−p/d) under the assumptions of the lemma on λ̂. The last bound together with
P(λ̂2

s < α)� 1 shows (A.8).
(ii) Let α = τ . If λs < 4τ , then due to the link condition we have 1 � 4τ/

�(βs−p/d), which implies (A.8). On the other hand, if λs � 4τ , then P(λ̂2
s < α) �

P(2|λ̂s −λs |� λs) and (A.8) follows as in case (i), which completes the proof. n

Proof of Theorem 3.1. In Lemma A.2, we show the boundE‖ϕ̂α
s −ϕs‖2�C ·{κ(δ∗)2 +

�(τ )} · ‖ϕ‖2
p , for some positive constant C depending on c only. Below we show that it

implies

E‖ϕ̂s − ϕ̂α
s ‖2 � 2c (1+ τ/α) D {κ(δ∗)2 +�(τ )‖ϕ‖2

p}. (A.9)
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The result follows from the conditions imposed on α (i.e., α � τ ), together with the in-
equality �(τ )� C d max(κ2(τ ),τ ) (Lemma A.1).

To prove (A.9) note that the term E
∥∥ϕ̂s − ϕ̂α

s
∥∥2 is bounded by a constant times the sum

I + II with

I = E
∥∥∥|λ̂s |−1|V̂ r − V r |I{βs−p � dκ2(δ∗)}I{̂λ2

s � α}
∥∥∥2

L2
μ(�)

,

II = E
∥∥∥|λ̂s |−1|λ̂s −λs ||Uϕs |I{βs−p � dκ2(δ∗)}I{̂λ2

s � α}
∥∥∥2

L2
μ(�)

.

Consider term I . From the inequality λ̂2
s /λ2

s +|λ̂s/λs − 1|2 � 1/2 and under the assump-
tions of the theorem, we use the Cauchy Schwarz inequality and write

I � 2c (1+ τ/α)η
∥∥∥λ−1

s I{βs−p � dκ2(δ∗)}
∥∥∥2

L2
μ(�)

.

Using that �(βs−p/d) � λ2
s (see (3.1)) together with the definition of δ∗ given in (3.4),

i.e., η‖I{βs−p � dκ2(δ∗)}|�(βs−p/d)|−1/2‖2
L2

μ(�)
� D κ2(δ∗), we have

I � 2c (1+ τ/α)η‖I{βs−p � dκ2(δ∗)} |�(βs−p/d)|−1/2‖2
L2

μ(�)

� 2c (1+ τ/α) D κ2(δ∗).

Term II is handled analogously:

II� 2
∫
�

|Uϕs |2 min
(
E|λ̂s −λs |2

λ2
s

+ E|λ̂s −λs |4
αλ2

s
,
E|λ̂s −λs |2

α

)
dμ,

and, under the assumptions of the theorem, we obtain

II� 2c (1+ τ/α)

∫
�

|Uϕs |2 min
( τ

�(βs−p/d)
,1
)

dμ

� 2c (1+ τ/α)�(τ ) ‖ϕ‖2
p .

The bound (A.9) follows from the above controls of terms I and II, which completes the
proof. n

A.2. Proofs of Theorems 4.1 and 4.2. We first recall the notations

Ts := T B−s/2, T̂s := T̂ B−s/2, ϕs := Bs/2ϕ,

and ϕ̂α
s := gα(T̂ �

s T̂s)T̂ �
s T̂sϕs . (A.10)

LEMMA A.3. Suppose the assumptions of Theorem 4.1 are satisfied. Then

E‖ϕ̂α
s −ϕs‖2 � C ρ2 κ

(
C ′{α + (E‖T − T̂ ‖4)1/2}

)
, (A.11)

where C and C ′ are positive constants depending only on κ .
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Proof. The proof technique is partly inspired from Nair et al. (2005). Since T satisfies

Assumption 2.3 for some index function κ and ϕ ∈ Hp , we conclude ρ :=
∥∥∥κ(T �

s Ts)
−1ϕs

∥∥∥<

∞. Let ψ̂α := ϕs − ϕ̂α
s and R̂α := [I −gα(T̂ �

s T̂s)T̂ �
s T̂s ], then we have ψ̂α = R̂αϕs . We use

‖R̂1/2
α ‖� 1 (Assumption 4.1(ii)) and obtain, due to the Cauchy-Schwarz inequality,

‖ψ̂α‖2 = ‖R̂αϕs‖2

� ‖R̂1/2
α ϕs‖2 = 〈R̂αϕs ,ϕs〉 = 〈κ(T �

s Ts)ψ̂α,κ(T �
s Ts)

−1ϕs〉

� ‖κ(T �
s Ts)ψ̂α‖ ρ. (A.12)

Thereby we can write

E‖ψ̂α‖2 � ρ(E‖κ(T �
s Ts)ψ̂α‖2)1/2, (A.13)

which, together with d α ≥ ‖(T̂ �
s T̂s)

1/2 R̂1/2
α ‖2 (Assumption 4.1(ii)), gives

‖T̂s ψ̂α‖2 = ‖T̂s R̂αϕs‖2 = ‖(T̂ �
s T̂s)

1/2 R̂αϕs‖2

� αd‖R̂1/2
α ϕs‖2 � αdρ‖κ(T �

s Ts)ψ̂α‖,
and hence,

E‖T̂ ψ̂α‖2 � αdρ(E‖κ(T �
s Ts)Bs/2ψ̂α‖2)1/2. (A.14)

Using (A.12) together with ‖B−s/2‖� c and the Cauchy Schwarz inequality;

E‖(Ts − T̂s)ψ̂α‖2 � E‖(Ts − T̂s)‖2‖ψ̂α‖2

� cρ(E‖T − T̂ ‖4)1/2(E‖κ(T �
s Ts)ψ̂α‖2)1/2. (A.15)

Combining (A.14) and (A.15), we obtain

E‖Ts ψ̂α‖2 � E‖(Ts − T̂s)ψ̂α‖2 +E‖T̂s ψ̂α‖
� cρ

{
(E‖T − T̂ ‖4)1/2 +α

}
(E‖κ(T �

s Ts)ψ̂α‖2)1/2. (A.16)

Let � be the inverse function of κ2, which is assumed to be convex on the interval (0,c2].
Define d2 = c2/‖κ(T �

s Ts)‖2 ∧1. If {λ2
s ,Us : H → L2

μs
(�s)} denotes the spectral decom-

position of T �
s Ts , then c2 � d2κ(λ2

s )2. Hence, using Jensen’s inequality we have

�
(d2

E‖κ(T �
s Ts)ψ̂α‖2

E‖ψ̂α‖2

)
�
E
∫
�s

�(d2κ(λ2
s (ω))2)|Usψ̂α |2(ω)μs(dω)

E
∫
�s

|Usψ̂α |2(ω)μs(dω)
.

Since �(d2κ(λ2
s )2)��(κ(λ2

s )2) = λ2
s , we conclude that

�
(d2

E‖κ(T �
s Ts)ψ̂α‖2

E‖ψ̂α‖2

)
� E‖(T �

s Ts)
1/2ψ̂α‖2

E‖ψ̂α‖2
= E‖Tsψ̂α‖2

E‖ψ̂α‖2
. (A.17)
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In order to combine the three estimates (A.13), (A.16), and (A.17), let us introduce a new
function � by �(ω) := �(ω2)/ω2. Since � is convex, we conclude that � is mono-
tonically increasing on (0,c]. By (A.13), that is, (E‖κ(T �

s Ts)ψ̂α‖2)1/4/ρ1/2 � (E‖κ(T �
s

Ts)ψ̂α‖2)1/2/(E‖ψ̂α‖2)1/2, the monotonicity of � and (A.17) follows

�
(d · (E‖κ(T �

s Ts)ψ̂α‖2)1/4

ρ1/2

)
��

(d · (E‖κ(T �
s Ts)ψ̂α‖2)1/2

(E‖ψ̂α‖2)1/2

)

� E‖Ts ψ̂α‖2

d2 E‖κ(T �
s Ts)ψ̂α‖2

.

Multiplying by d2 (E‖κ(T �
s Ts)ψ̂α‖2)1/2/ρ and exploiting (A.16) yields

�
(d2 · (E‖κ(T �

s Ts)ψ̂α‖2)1/2

ρ

)
� c · {α + (E‖T − T̂ ‖4)1/2}. (A.18)

Thereby the result follows by combining (A.13) and (A.18), which completes the proof. n

Proof of Theorem 4.1. Since T satisfies (2.3) for some index function κ and ϕ ∈ Hp ,
p > 0, it follows that ρ := ‖κ(T �

s Ts)
−1ϕs‖ < ∞. The proof is based on the decomposition

E
∥∥ϕ̂s −ϕs

∥∥2 � 2E
∥∥ϕ̂s − ϕ̂α

s
∥∥2 +2E

∥∥ϕ̂α
s −ϕs

∥∥2
. (A.19)

By definition, together with ‖gα(T̂ �
s T̂s)T̂ �

s ‖2 � c/α (Assumption 4.1(i)), we have

E‖ϕ̂s − ϕ̂α
s ‖2 = E‖gα(T̂ �

s T̂s)T̂ �
s (r̂ − T̂sϕs)‖2 � c ·α−1

E‖r̂ − T̂ ϕ‖2, (A.20)

while from Lemma A.3 we obtain

E‖ϕ̂α
s −ϕs‖2 � C ρ2 κ

(
C ′[α + (E‖T − T̂ ‖4)1/2]

)2
. (A.21)

The result follows by combining (A.20) and (A.21) through (A.19), which completes the
proof. n

Proof of Theorem 4.2. Since T satisfies (2.3) for some index function κ and ϕ ∈ Hp ,
p > 0, it follows that ρ := ‖κ(T �

s Ts)
−1ϕs‖ < ∞. Considering the decomposition (A.19),

we bound the first term as in the proof of Theorem 4.1, that is, E‖ϕ̂s − ϕ̂α
s ‖2 �Cα−1

E‖r̂ −
T̂ ϕ‖2, while we show below that under the assumptions of the theorem the following bound
of the second term holds:

E‖ϕ̂α
s −ϕ‖2

s � C ρ2
[
κ(α)2 +E‖κ(T̂ �

s T̂s)−κ(T �
s Ts)‖2

]
. (A.22)

Thereby the assertion follows by combining the two bounds.
To prove (A.22) let ψ̂α := ϕs − ϕ̂α

s and R̂α := [I − gα(T̂ �
s T̂s)T̂ �

s T̂s ]; then we have

‖ψ̂α‖2 = ‖R̂αϕs‖2 � 2‖R̂ακ(T̂ �
s T̂s)κ(T �

s Ts)
−1ϕs‖2

+2‖R̂α[κ(T̂ �
s T̂s)−κ(T �

s Ts)]κ(T �
s Ts)

−1ϕs‖2.

Thereby, since ‖R̂α‖� 1 (Assumption 4.1) and ‖R̂1/2
α κ(T̂ �

s T̂s)‖2 � cκκ(α)2 (from (4.2)),

it follows (A.22). Indeed, ‖ψ̂α‖2 � Cρ2
(
κ(α)2 +‖κ(T̂ �

s T̂s)−κ(T �
s Ts)‖2

)
, and this com-

pletes the proof. n


