
 
2011/4 

 
 
■ 

 
 

Nonparametric Beta kernel estimator  
for long memory time series 

 
 
 

Taoufik Bouezmarni and Sébastien Van Bellegem 
 
 
 

 
 
 
 

   
 
 

 
 

 

Center for Operations Research 
and Econometrics 

 
Voie du Roman Pays, 34 

B-1348 Louvain-la-Neuve 
Belgium 

http://www.uclouvain.be/core 

D I S C U S S I O N  P A P E R  
 



CORE DISCUSSION PAPER   
2011/4 

 
Nonparametric Beta kernel estimator  

for long memory time series 
 

Taoufik BOUEZMARNI 1 and Sébastien VAN BELLEGEM2  
 
 

January 2011 
 

Abstract 
 

The paper introduces a new nonparametric estimator of the spectral density that is given in 
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1 Introduction

The estimation of a spectral density often requires to know whether the observed stationary
time series is short or long memory. Long memory, or long range dependent time series is
characterized by a spectral density that is unbounded at frequency zero, therefore the choice
of an optimal nonparametric estimator will be different if the spectral density is bounded
or not. It is one goal of the present paper to go beyond that limitation and to propose an
estimator that is applicable to any stationary data, being long range dependent or not.

A well-established nonparametric estimation procedure consists in estimating first the
parameter d0 of the long memory process. In that approach, the spectral density f is
assumed to behave like

f(λ) = |λ|−2d0L(λ) (1)

as λ → 0+, for d0 ∈ (0, 1/2), where L(λ) is slowly varying and such that 0 < L(0) < ∞.
Many papers study the estimation of d0. Among recent advances we can cite the approaches
of Andrews & Sun (2004), Robinson & Henry (2003) or Henry (2007) to name but a few.
See also the recent surveys in Doukhan et al. (2003); Robinson (2003); Palma (2007).

Inference on d0 allows to test whether that parameter is significantly larger than zero,
that is if the process is long memory, see Lobato & Robinson (1998), Lobato & Velasco
(2000) or Ohanissian et al. (2008). The testing step is important because the asymptotic
distribution of the spectral density estimator is usually not the same if d0 = 0 or if d0 > 0.
If the process is short memory, the nonparametric estimation of its spectral density becomes
a classical problem of inference. If not, it has been proposed to estimate the spectrum for λ

close to zero by Ĉ|λ|−2d̂0 for a consistent estimator of d̂0 and where Ĉ is another estimator
that makes the overall estimation consistent (the procedure is recalled with more details in
Section 3.3 below). Away from the origin, another nonparametric estimation must be used
in order to evaluate the spectrum for λ > 0.

In this paper we study a new nonparametric estimator of the spectral density that
is given by a smoothing of the periodogram by a Beta kernel. The Beta kernel is the
probability density function of a Beta random variable. It is not a symmetric kernel, and
its shape varies according to the frequency where the spectrum is estimated, see Section 2
below. Beta kernel smoothing was introduced by Brown & Chen (1999) in the context of
smoothing the Bernstein polynomials in order to estimate compactly supported regression
curves. It has then been used in order to address the boundary bias problem in the context
of regression or probability density estimation, see Chen (1999); Chen (2000).

Because the Beta kernel diverges at zero when its bandwidth shrinks, it is an appealing
smoother of the periodogram when the process is long memory. In fact, we show below that
it adapts automatically to the memory of the time series: If the process is short memory, the
resulting estimation of the spectral density is automatically bounded, whereas the estimator
diverges at the origin when it is applied to long range dependent data.

The paper is organized as follows. In Section 2 we define the Beta kernel estimator of the
spectral density, and provide an illustration in the estimation of the returns and absolute
returns of the S&P500 index. The properties of the estimator are discussed in Section 3.
First, we study its behavior outside the origin and establish its uniform convergence over
any compact set of frequencies. Then we consider what happens at the origin, and show
that the estimator is unbounded in probability at the origin for long range data, and it is
bounded for short memory processes. We also derive a stronger result that is the relative
convergence of the estimator at the origin. Next, we study the finite sample performance of
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the estimator. A Monte Carlo study on three parametric (ARFIMA) models confirms the
reasonable adaptation of the proposed estimator to the range of memory of the process. We
compare the empirical performances of our estimator with the semi-nonparametric estimator
of Robinson (1995) and show the merits of both methods.

The last Section addresses more practical aspects of the estimation procedure. As every
nonparametric estimator, the Beta kernel smoother depends on a nuisance parameter. In
Section 4 we study a cross-validation method to select that parameter following the general
method of Hurvich (1980). Another Monte Carlo study demonstrates the good performance
of the fully data-driven Beta kernel estimator, which is also illustrated on more recent paths
of the S&P500 index. An appendix contains the proofs of all results.

2 The Beta kernel estimator of the spectral density

2.1 Construction of the estimator

Beta kernel estimators were studied by Chen (2000) in the context of the estimation of
regression curves. The motivation was to develop a kernel smoothing technique that is free
of boundary bias. In the context of time series analysis, this property is valuable since the
nonparametric kernel estimator of the periodogram is not necessarily adapted at the border,
especially if there is a pole at frequency λ = 0.

We first construct the estimator. Suppose we observe X1, . . . , XT from a stationary
process with spectral density f(λ) =

∑
k γ(k) exp(−2πiλk), λ ∈ (0, 1) where γ(k) is the

covariance function of Xt. For the sake of simplicity, we assume the stationary process to
be zero mean. The periodogram

IT (ωj) =
1

T
|
T∑
t=1

Xt exp(−2πiωjt)|2 ωj =
j

T
, j = 1, 2, . . . , T. (2)

is known to be an asymptotically unbiased, not consistent estimator of the spectral density
f . A consistent estimator is found after an appropriate smoothing of IT over frequencies.
In this paper, we study the estimator

f̂(λ) =
1

T

∑
j

Kb,λ (ωj) IT (ωj) (3)

where Kb,λ is a Beta kernel defined as

Kb,λ(ω) =
ωλ/b(1− ω)(1−λ)/b

B
(
λ
b + 1, 1−λb + 1

)110≤ω≤1 (4)

for the beta function B and the smoothing parameter b. The Beta kernel is the probability
density function of a Beta{1 + λ/b, 1 + (1− λ)/b} random variable.

In contrast to most kernel estimators, the estimator f̂(λ) does not use a symmetric
kernel but a kernel whose shape varies with λ. That property is illustrated at Figure 1,
where the function Kb,λ(·) is displayed for some frequencies λ. This varying shape kernel
implies that the amount of smoothing changes according to the frequency where spectrum
is estimated. As noticed by Chen (1999), the variance of the Beta{1 + λ/b, 1 + (1 − λ)/b}
random variable is of order

bλ(1− λ) +O(b2) (5)
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suggesting that the amount of smoothing is small at the border of the support. Note also
that the Beta kernel does not put any weight outside the support of f(λ).
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Figure 1: Beta kernel Kb,λ(·) used to estimate the spectral density f(λ). The shape of that
kernel varies according to the frequency λ where the spectral density is estimated (b = 0.3).

2.2 Empirical illustration

An eminent feature of the Beta kernel estimator is its adaptivity to the boundness or
unboundness of the spectrum at the origin λ = 0. To illustrate that property, we consider
in Figure 2 a segment of the daily absolute returns of the S&P500 that was analysed by
Lobato & Savin (1998). Using a Lagrange multiplier test, the later conclude that there is
no evidence of long memory in the levels of the returns, whereas their analysis favors long
memory of the squared returns.
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Figure 2: Daily log returns of S&P500, July 1962 to December 1972, 2616 data

In Figure 3(a) and (b), we display the empirical autocorrelation function of the log
returns, and absolute log returns respectively. Those pictures illustrate the conclusions of
Lobato & Savin (1998) recalled above.

Estimation of the log-spectrum by Beta kernel of the log returns and the absolute log
returns is proposed in Figures 3(c) and (d) respectively. The estimator is drawn for several
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values of the smoothing parameters, b = 0.005, 0.01 and 0.05. We observe that smaller b
is, more oscillating is the estimator. We therefore recover the usual regularity properties of
the estimator with respect to b. A data-driven choice of b is proposed in Section 4 below.

Figures 3(c) and (d) also show that the Beta kernel estimator of the spectrum is bounded
for the log returns, and is diverging for the absolute log returns. This illustrates how the
estimator automatically adapts to the unknown memory structure of the process. In other
words, the estimator can be applied to time series of any type of memory, in contrast to
most estimators who are applicable either to short or to long memory processes.

For the sake of comparison, other kernel smoothing of the periodogram are displayed in
Figures 3(e) and (f), respectively for the log-returns and the absolute log returns. Three
kernel smoothing are superimposed: (i) The symmetric Daniell kernel estimator with band-
width 0.036; (ii) a rectangular kernel estimator with bandwidth 0.043 and (iii) an asym-
metric triangular kernel. For exact definitions, we refer e.g. to Brillinger (2001) or many
other textbooks. Although the standard kernel methods show a peak close to the frequency
zero in Figure 3(f), it is appearent that the unboundness of the spectrum is more difficult
to display with classical methods. We could vary the bandwidth in order to underline the
peak close to the pole, but, in such a case, the quality of estimation far from frequency zero
would be very weak.
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(a) Empirical autocorrelation func-
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(b) Empirical autocorrelation func-
tion of the absolute log returns
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(c) Log spectrum of the log returns,
estimated by Beta kernel estimator
with various bandwidths b
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(d) Log spectrum of the absolute
log returns, estimated by Beta ker-
nel estimator with various band-
widths b
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(e) Log spectrum of the log returns,
estimated by other kernel smooth-
ing of the periodogram: (i) Sym-
metric Daniell kernel; (ii) Rectan-
gular kernel; (iii) Asymmetric tri-
angular kernel.
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Figure 3: Empirical autocorrelation function and Log spectrum estimation of the daily log
returns of S&P500 (July 1962 to December 1972)
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3 Properties of the estimator

In this section, we explore the asymptotic and the finite sample properties of the estimator.
Overall, we assume that the process can be long memory, in the sense that it may have a
pole at the origin:

Assumption 3.1. The spectral density f is such that1 f(λ) ∼ λ−β as λ→ 0+, for 0 ≤ β <
1. For λ > 0 , f is a Lipschitz, continuous, bounded, strictly positive function on [λ, 1).

We start our discussion by studying the behavior of the estimator outside the origin.

3.1 Behavior of the estimator outside the origin

Given a stationary, zero mean time series {Xt; t = 1, . . . T} with a spectral density f(λ)
that is two times differentiable, we derive below the appropriate rate of convergence of the
bandwidth b = b(T ) such that the bias and the variance of the Beta kernel estimator vanish
asymptotically. We also prove the uniform convergence of the estimator on any compact
set in (0, 1).

Proposition 3.1. Let f be a spectral density function that is twice differentiable and such
that Assumption 3.1 is fulfilled, and f̂ be the Beta kernel spectral estimator (3). The expec-
tation of f̂ at frequency λ 6= 0 is given by

E(f̂(λ)) = f(λ)− b{(1− 2λ)f ′(λ) +
1

2
λ(1− λ)f ′′(λ)}+ o

(
b+

1

T 1/2b1/4

)
.

where f ′ and f ′′ are the first, resp. the second derivative of f . The variance of f̂ is such
that

Var(f̂(λ)) =
1

T
√
b

f(λ)2

2
√
πλ(1− λ)

+ o((Tb1/2)−1) + ρT

with ρT = O(logr(T )/(bT 2−2β)) for some r > 0 if λ/b and (1− λ)/b→∞, and

Var(f̂(λ)) =
C(κ)

Tb
{f(λ)2 +O(T−1)}+ ρT

if λ/b or (1− λ)/b→ κ, for a strictly positive constant κ and

C(κ) =
Γ(2κ+ 1)

21+2κΓ(κ+ 1)2
.

Considering the bias and the variance convergences, we check that outside the origin
the Beta kernel estimator is an asymptotically unbiased estimator with vanishing variance
if β < 1/2 and if the bandwidth b = b(T ) satisfies

b+
1

T
√
b
→ 0 (6)

for some α > 0. The constraint on β imposes that the spectrum is still square integrable
around the pole, and therefore the mean square error is invariant to the explicit variation
of f around frequency 0. Following Robinson (1994a), it is possible to go beyond that

1For two functions h1(λ) and h2(λ), we write h1(λ) ∼ h2(λ) if there exists two nonegative, finite constant
c1 and c2 such that c1 ≤ h1(λ)/h2(λ) ≤ c2 for all λ.

6



constraint under more assumptions on f , but leading to different expressions for the mean
square error.

In the next result, we state the uniform convergence of the estimator on a compact set
outside the origin.

Proposition 3.2. Let f be the spectral density function such that Assumption 3.1 is fulfilled
with β ∈ [0, 1/2). For any compact set I in (0, 1) and if the bandwidth satisfies (6) and is
such that (b2+εT )→∞ for some ε > 0, then the beta kernel spectral estimator is uniformly
convergent over I, i.e.

sup
λ∈I

∣∣∣f̂(λ)− f(λ)
∣∣∣ P−→ 0.

The proof of the proposition is to be found in the Appendix. Note that the result is also
valid in the particular case where β = 0, that is the process is short memory.

3.2 Behavior of the estimator close to the pole

One special interest is to study the behavior of the estimator close to the zero frequency,
where the spectrum is not bounded. The first result shows that the Beta kernel estimator
for long memory time series is unbounded at the origin.

Proposition 3.3. Let f be the spectral density function such that Assumption 3.1 is fulfilled
with β ∈ (0, 1/2) and consider the Beta kernel estimator (3) with a bandwidth that satisfies

(6) and T 1−2βb→∞. Then the estimator is such that f̂(0)
P−→ +∞ as T →∞.

The next corollary states the consistency of the estimator at λ = 0 for short time series.

Corollary 3.1. Let f be the spectral density function such that Assumption 3.1 is fulfilled
with β = 0 (short memory process). If b satisfies (6) and Tb → ∞, then the Beta kernel

spectral estimator (3) is such that f̂(0)
P−→ f(0).

We conclude that the Beta kernel estimator is automatically adapted to the “type of
memory” of the spectral density (long vs short range). This result has been already illus-
trated in Figure 3.

However, even if the estimator is consistent at the pole, the last proposition does not
give any information about the closeness of the estimator to the true value close to the
origin. In order to have an idea about that closeness, the next proposition tells more about
the relative convergence of the Beta kernel estimator when the spectral density is estimated
near the origin. In the next section, we also show empirically the reasonable relative rate
of convergence of the estimator close to the pole.

Proposition 3.4. Let f be the spectral density function such that Assumption 3.1 is fulfilled
with β ∈ [0, 1/2) and consider the Beta kernel estimator (3) with a bandwidth that satisfies
(6) and Tb→∞. Then the Beta kernel spectral estimator (3) is such that∣∣∣∣∣ f̂(λ)

f(λ)
− 1

∣∣∣∣∣ P−→ 0

when λ tends to zero such that λ/b→ κ > 0.

3.3 Finite sample properties

In this section, we examine the properties of the estimator through Monte Carlo simulations.

7



In order to judge quality of the estimator, we provide a comparison with the semi-
parametric estimator of Robinson (1994b). That approach assumes that the spectrum is
such that f(λ) ∼ Cfλ

1−2H as λ → 0+, and proposes consistent estimates of H and Cf

that we recall now. Observing that the spectral distribution, F (λ) =
∫ λ
0 f , is such that

F (qλ)/F (λ) ∼ q2(1−H) for all q ∈ (0, 1), Robinson (1994b) has suggested to estimate H by

Ĥ = 1− log(F̂ (qλm)/F (λm))

2 log q

for a given q and frequency λm = m/T . Similarly, observing that the spectral distribution

is F (λ) =
Cf

2−2Hλ
2−2H , an estimate of Cf is given by

Ĉf = 2(1− Ĥ)F̂ (λm)λ2(Ĥ−1)m .

Finally, an estimator of the spectrum close to the origin is given by f̂(λ) = Ĉfλ
1−2Ĥ .

The semiparametric estimator depends on the choice of two parameters, q and m. In
our computations below, we set q = 0.5 as it is often observed in the literature. The choice
of m is however more delicate. Based on the expansion of the asymptotic mean square
error, some rules for the choice of m have been proposed in Robinson (1994a). They were
the starting point of the feasible, data-driven proposal of Delgado & Robinson (1996a) and
Delgado & Robinson (1996b).

In order to facilitate the comparison between the semiparametric estimator and the Beta
kernel estimator, we have simulated below three ARFIMA models that are also studied
in Delgado & Robinson (1996a). ARFIMA models provide a well-established parametric
specification of long memory. It is given by the fractional autoregressive integrated moving
average FARIMA (p, d, q) model that has spectral density

f(λ) = |1− exp(iλ)|1−2Hh(λ), −1 ≤ λ ≤ 1, H ∈ [0, 1] (7)

where

h(λ) = σ2
|b(exp(iλ))|2

|a(exp(iλ))|2

with a(z) = 1−
∑p

j=1 ajz
j and b(z) = 1−

∑q
j=1 bjz

j . In that model, H = 1/2 corresponds to
short memory if we assume 0 < h(λ) <∞, wheras H > 1/2 leads to a long memory process.
Figure 4 displays the logarithm of the spectral density of the three ARFIMA generating
models used in the simulation below.

The estimators were computed on 1000 Monte Carlo simulations of the models, for
sample sizes T = 400, 600, 1000. Since the semiparametric estimator is a local estimator
around the pole, we do not compare with the Beta kernel estimator over all frequencies
but only in a neighbourhood of the frequency zero . According to the theory of Robinson
(1994b), we compute the error of estimation on the frequencies in (λj0 , λj1), where j0 = [ 5

√
T ]

and j1 = [
√
T ]. The empirical error that we compute is the relative mean absolute deviation,

i.e.

RMAD[j0,j1] =
1

j1 − j0 + 1

j1∑
j=j0

∣∣f̂ ( jT )− f ( jT ) ∣∣
f
(
j
T

)
8
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a1 = 1.172, a2 = −0.707.

Figure 4: Logarithm of the three spectral densities of the ARFIMA used in the simulations.

where f̂ denotes the considered estimator of the spectrum. Taking the relative MAD instead
of the MAD is motivated by the unboundesss of the spectral density at frequency zero.

Note that, because j0 and j1 depend on T , the range of frequencies where the error is
computed is different for each sample size. Therefore the MAD presented in the empiricial
study below are only comparable for a given sample size.

Tables 1 to 3 display the results of the Monte Carlo study. The ARFIMA time series
were generated via the library ‘fracdiff’ in R. In order to avoid the dependence of our
conclusions to the choice of the bandwidths, we have computed the RMAD for a range of
bandwidths. The range of bandwidths b of the Beta kernel estimator is [0.01, 0.5], and range
of m in the semiparametric estimation is [T 1/2, T 4/5] . The tables display the five results
that were the closest to the best RMAD found. (In the next section, we also address the
question of the data driven choice of b.)

T = 400 T = 600 T = 1000
Beta kernel:

b RMAD b RMAD b RMAD
0.08 0.416 (0.190) 0.08 0.364 (0.144) 0.08 0.324 (0.104)
0.115 0.339 (0.130) 0.115 0.302 (0.091) 0.115 0.288 (0.059)
0.15 0.307 (0.089) 0.15 0.287 (0.061) 0.15 0.298 (0.052)
0.185 0.299 (0.066) 0.185 0.296 (0.055) 0.185 0.329 (0.065)
0.22 0.304 (0.060) 0.22 0.317 (0.063) 0.22 0.366 (0.077)

Semiparametric:
m RMAD m RMAD m RMAD
63 0.173 (0.124) 95 0.146 (0.102) 157 0.145 (0.107)
70 0.132 (0.090) 105 0.109 (0.080) 172 0.103 (0.082)
77 0.123 (0.081) 116 0.099 (0.070) 188 0.086 (0.062)
84 0.133 (0.087) 126 0.112 (0.077) 204 0.087 (0.058)
91 0.151 (0.089) 136 0.139 (0.081) 219 0.101 (0.062)

Table 1: Results of the Monte Carlo simulation for an ARFIMA(1,H = 0.9,0) model with
a1 = 0.5. Standard errors of the relative mean absolute deviation (RMAD) are in paren-
thesis.

Table 1 reports the results for an ARFIMA(1,H = 0.9,0) model with a1 = 0.5. In that
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T = 400 T = 600 T = 1000
Beta kernel:

b RMAD b RMAD b RMAD
0.08 0.292 (0.160) 0.08 0.250 (0.132) 0.08 0.218 (0.102)
0.115 0.178 (0.106) 0.115 0.144 (0.078) 0.115 0.119 (0.053)
0.15 0.130 (0.067) 0.15 0.113 (0.048) 0.15 0.105 (0.039)
0.185 0.127 (0.058) 0.185 0.129 (0.057) 0.185 0.142 (0.056)
0.22 0.148 (0.068) 0.22 0.167 (0.070) 0.22 0.194 (0.061)

Semiparametric:
m RMAD m RMAD m RMAD
91 0.554 (0.183) 126 0.710 (0.192) 62 0.867 (0.255)
99 0.535 (0.174) 136 0.703 (0.184) 78 0.858 (0.242)
106 0.517 (0.165) 146 0.694 (0.176) 94 0.856 (0.235)
113 0.504 (0.160) 156 0.686 (0.168) 110 0.860 (0.229)
120 0.487 (0.150) 166 0.676 (0.163) 125 0.863 (0.223)

Table 2: Results of the Monte Carlo simulation for an ARFIMA(1,H = 0.6,0) model with
a1 = 0.5. Standard errors of the relative mean absolute deviation (RMAD) are in paren-
thesis.

T = 400 T = 600 T = 1000
Beta kernel:

b RMAD b RMAD b RMAD
0.0011 0.9429 (0.396) 0.0062 1.3882 (0.428) 0.0415 1.8211 (0.341)
0.0016 0.9383 (0.394) 0.0071 1.3874 (0.422) 0.0432 1.8094 (0.338)
0.0021 0.9381 (0.391) 0.0076 1.3872 (0.419) 0.0449 1.7974 (0.334)
0.0027 0.9395 (0.388) 0.0085 1.3875 (0.413) 0.0466 1.7852 (0.330)
0.0032 0.9419 (0.384) 0.0095 1.3886 (0.408) 0.0483 1.7727 (0.327)

Semiparametric:
m RMAD m RMAD m RMAD
63 1.401 (0.475) 85 1.792 (0.605) 125 2.440 (0.698)
70 1.354 (0.451) 95 1.693 (0.589) 141 2.243 (0.712)
77 1.310 (0.434) 105 1.656 (0.568) 157 2.125 (0.688)
84 1.344 (0.409) 116 1.719 (0.542) 172 2.140 (0.675)
91 1.345 (0.381) 126 1.810 (0.512) 188 2.230 (0.655)

Table 3: Results of the Monte Carlo simulation for an ARFIMA(2,H = 0.9,0) model with
a1 = 1.172, a2 = −0.707. Standard errors of the relative mean absolute deviation (RMAD)
are in parenthesis.

situation, the semiparametric estimator provides the best results whatever the sample size
is. The corresponding value of m varies with the sample size; the ratio between m and
the sample size is around λm ≈ 0.19. Note that for T = 1000, the adaptive value of m
found in Delgado & Robinson (1996a) converges to 81 (in the conventions of the latter, it
corresponds to the frequency λm = (2π)× 81/1000 ≈ 0.51). The contrast with the optimal
value of m found here is explained by our different objective function: whereas Delgado &
Robinson (1996a) concentrates on the mean square error, we consider the RMAD.

In Table 2 we consider the same process except that H = 0.6, that is our simulated
time series still has a long range dependence, but now with a memory that is “shorter”. In
that situation, the Beta kernel shows a dramatic improvement when it is compared to the
semiparametric estimator. This was expected, because one of our motivations in introducing
the Beta kernel is its adaptivity to the memory of the time series.
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Another strongly dependent process with H = 0.9 is considered in Table 3, however with
a more complex dynamical structure. As it is showed in Figure 4(b), the spectral density
of that process is not monotone and presents a cycle between frequencies 0.1 and 0.2. The
semiparametric estimator is not well-fitted to that situation of non monotone spectrum, as
it is confirmed by the results of the Monte Carlo simulation. In contrast, the performance of
the Beta kernel is better and demonstrates the good finite sample behavior of the estimator
outside the origin. The spectral density of this ARFIMA(2,H = 0.9,0) appeared to be very
difficult to estimate and it was not straightforward to select the bandwidth of the Beta
kernel estimator. In the next section, we give a fully adaptive estimator computed with a
data-driven bandwidth b.

4 Empirical results

4.1 Data-driven choice of the bandwidth parameter

The selection of the bandwidth parameter from the data is a relevant question that is
addressed in the literature. In our empirical exercise below, we use the generalized leave-
one-out spectral technique of Hurvich (1980). In that approach, the function

I−jT (ωk) =

{
IT (ωk) k 6= j
{IT (ωj−1) + IT (ωj+1)}/2 k = j

is defined for each j = 1, . . . T . The Beta kernel smoothing with bandwidth b is applied
to I−jT (ωk) and is denoted f̂−jb (λ). The cross-validation is motivated by the approximate

independence between f̂−jb (ωj) and IT (ωj). In our context of estimation under the L1 loss,
it takes the following form:

CV (b) =
∑
j∈J
|f̂−jb (ωj)− IT (ωj)| (8)

where J denotes a given discrete range of frequencies.
In order to evaluate the performance of CV (b) for the choice of the bandwidth, Table

4 reports the results of a Monte Carlo simulation on the three ARFIMA models given in
Figure 4. For each sample size T , the bandwidth minimizing (8) is found and the table
gives the average and standard deviation of the selected bandwidths over 1000 simulations.
As expected the adaptive bandwidth is decreasing as the sample size increases. In the
simulations, the set J is chosen to be 100 equidistant points in the interval J = [T 1/5, T2 −√
T ]. For each simulated time series, we focus on the adaptive estimator, that is the Beta

kernel estimator computed at the bandwidth minimizing the Cross Validation (8). In Table
4 we also estimate the error of the adaptive estimator. The measure of the error considered
here is the RMAD computed over J (denoted by RMADJ in Table 4), and the RMAD
computed over all discrete frequencies in the interval (0, 0.5) (denoted by RMAD◦ in the
table).

The deviation found by RMAD◦ is of course larger than the one based on RMADJ
because the bandwidth was optimized on frequencies J . Because RMAD◦ is computed
over a fixed range of frequencies (0, 0.5), it is comparable over sample size and Table 4
shows the improvement of the estimator with that respect.
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T = 400 T = 600 T = 1000
ARFIMA(1,H = 0.9,0) model:

b̂cv 0.118 (0.094) 0.107 (0.090) 0.089 (0.086)
RMADJ 0.503 (0.320) 0.504 (0.354) 0.549 (0.361)
RMAD◦ 1.466 (0.421) 1.412 (0.413) 1.340 (0.384)

ARFIMA(1,H = 0.6,0) model:

b̂cv 0.421 (0.125) 0.411 (0.131) 0.394 (0.139)
RMADJ 0.335 (0.132) 0.370 (0.128) 0.400 (0.154)
RMAD◦ 1.056 (0.148) 1.045 (0.139) 1.039 (0.109)

ARFIMA(2,H = 0.9,0) model:

b̂cv 0.280 (0.199) 0.250 (0.200) 0.213 (0.196)
RMADJ 0.537 (0.419) 0.500 (0.419) 0.584 (0.398)
RMAD◦ 13.291 (8.090) 12.203 (8.233) 10.791 (8.16)

Table 4: The performance of the adaptive Beta kernel estimator from 1000 Monte Carlo
simulations on the three ARFIMA models. The line b̂cv gives the averages and the standard
deviations of the adaptive bandwidth. The line RMADJ gives the averages and s.d. of the
RMAD adaptive estimator over J = [T 1/5, (T/2) −

√
T ]. The line RMAD◦ gives the same

statistic over all discrete frequencies in (0, 0.5).

4.2 Nonparametric analysis of S&P 500

We end this study by an application of the data driven estimator on the absolute value of the
log returns of the S&P 500 index. In Section 2.2, we already show the use of the estimator
on some paths of the stock price that were analysed in Lobato & Savin (1998). Below we
consider the path between January 1973 and December 1994, but we also consider two more
recent segments of data: from January 1995 and December 2001, and from January 2002
and May 2009.

In Figure 5 we superimpose the logarithm of the data-driven estimator obtained from
the three periods of time. In each segment of time, the data are standardised by their
standard deviation for the sake of comparison. The bandwidth that is selected by the
Cross-validation method is b = 1.514 × 10−4 for the period 1973–1994, b = 7.475 × 10−4

for the period 1995–2001, and b = 2.815 × 10−5 for the period 2002–2009. Note that the
Cross-validation do not provide a clear minimum for the period 1995–2001 because it is flat
for b > 7.475× 10−4.

From the estimation, it is apparent that the spectrum over periods 1973–1994 and 1995–
2001 shows clear similarities, whereas the most recent data shows a different behavior for
low frequencies. Beyond the frequency zero, the spetrum shows local minima corresponding
to various periodocities in the absolute returns. Some periodicities are coherent between the
three segments of time. Because the Beta kernel spectral estimator is consistent whatever
is the memory of the time series, this empirical example shows that it might be a valuable
ingredient in the economic study of the hidden seasonality stock prices.

A Appendix: Proofs

In the proofs, we denote by K(·, α, β) the probability density of a Beta(α, β) random vari-
able.
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Figure 5: The data-driven log-spectral estimator of the standardized absolute value of the
S&P 500 log returns is superimposed for three different periods of time.

Proof of Proposition 3.1. The expectation of the Beta kernel estimator at frequency
λ 6= 0 is given by

E(f̂(λ)) =

∫ 1

0
Kb,λ(u)f(u)du+R1 +R2

where R1 and R2 are two approximation terms that are given by

R1 =
1

T

∑
j

Kb,λ(ωj)f(ωj)−
∫ 1

0
Kb,λ(u)f(u)du

and

R2 = E
[ 1

T

∑
j

Kb,λ(ωj)(IT (ωj)− f(ωj))
]
.

By the smoothness conditions assumed on f it is straightforward to check that the approx-
imation term R1 has rate O(T−1). The term R2 pools the periodogram over frequencies.
After calculation, R2 is also written

R2 =
1

T

∑
j

Kb,λ(ωj)Aj,T ((0, 1)) with Aj,T (I) :=

∫
I
KT (u){f(u+ ωj)− f(ωj)}du

where KT (u) := (2πT )−1|
∑

s exp(2πius)|2 is the Fejér kernel. If β 6= 0, choose a sequence
m = m(T ) such that log(m)/T = O(1) and m/T β = o(1) and R2 is bounded by the the

13



sum of the three following terms:

R21 =
1

T

∑
j

Kb,λ(ωj)Aj,T ((ε, 1− ε))

R22 =
1

T

∑
j

Kb,λ(ωj)Aj,T ((ωm, ε] ∪ [1− ε, 1− ωm))

R23 =
1

T

∑
j

Kb,λ(ωj)Aj,T ((0, ωm] ∪ [1− ωm, 1)) .

If β = 0, set m ≡ 0 and R23 ≡ 0. The Fejér kernel is such that

KT (u) = O

(
T

1 + T 2u2

)
, 0 < |u| 6 1,

∫ 1

0
KT (u)du = 2π,

see e.g. Robinson (1994b). Moreover the Beta kernel satisfies Kb,λ(u) ≤ c1b
−1/2{λ(1 −

λ)}−1/2 where c1 is a positive constant, see Chen (2000). Therefore,

R21 = O

(
1

Tε2
√
b

∫ 1

0
f(ω)dω

)
= O

(
1

T
√
b

)
.

The Lipschitz property assumed on the spectral density implies for u > 0 that |f(u+ωj)−
f(ωj)| 6 Cuω−βj for some constant C. When β 6= 0 and by choice of the sequence m,

R22 = O

 1

T 2
√
b

∑
j

ω−βj

∫
(ωm,ε]∪[1−ε,1−ωm)

u−1du

 = O

(
| log(m/T )|

T
√
b

)
,

and

R23 = O

 ωm

T
√
b

∑
j

ω−βj

∫ 1

0
K(u)du

 = O

(
m

T
√
b

)
.

We choose the sequence m = m(T ) so that m/(T 1/2b1/4)→ 0 as T →∞, and therefore R2

has the rate o(1/(T 1/2b1/4)). We can now write

E(f̂(λ)) =

∫ 1

0
Kb,λ(u)f(u)du+R2 (9)

= E(f(ξλ)) +R2

where ξλ is a Beta{1 + λ/b, 1 + (1− λ)/b} random variable. A general approximation bias
of E(f(ξλ)) has been derived in Chen (2000) and leads to

f(λ)− E(f̂(λ)) = b{(1− 2λ)f ′(λ) +
1

2
λ(1− λ)f ′′(λ)}+ o(b) +R2.

This ends the calculation of the expectation of the Beta kernel.
The variance of the estimator is

Varf̂(λ) =
1

T 2

T∑
s,t=1

Kb,λ(ωs)Kb,λ(ωt)Cov(IT (ωs), IT (ωt))

14



For t 6= s we use that Cov(IT (ωs)/f(ωs), IT (ωt)/f(ωt)) = rst where
∑

s<t rst = O(logr(T ))
for some r > 0 (e.g. Moulines & Soulier (2003)). Recalling that the Beta kernel satisfies
Kb,λ(u) ≤ c1b−1/2{λ(1− λ)}−1/2, the sum over s 6= t is of order

1

bT

∑
s<t

rstf(ωs)f(ωt)

The control of this rate is different for ωs close to 0 or far from 0. For s such that ωs >
ωs0 > 0 the rate is logr(T )/(bT 2). Let the sequence sT such that s−1T + Ts−1T → 0. For s
such that ωsT > ωs we need to control

1

bT

sT∑
s=1

sT∑
t=s+1

rstf(ωs)f(ωt) +
1

bT

sT∑
s=1

T∑
t=sT

rstf(ωs)f(ωt) .

The first term is the dominant term and has a rate given by

O

(
1

bT 2−2β

sT∑
s=1

sT∑
t=s+1

s−βt−βrst

)
= O

(
logr(T )

bT 2−2β

)
.

The control is similar for s such that ω0 > ωs > ωsT .
For t = s we use that Var(IT (ωs)/f(ωs)) is asymptoticaly uniformly bounded (e.g. Deo

(1997)) so that the order for this sum is

1

T 2

∑
s

Kb,λ(ωs)
2f(ωs)

2 =
1

T
G(λ)E(f(ρλ)2)

where ρλ is a Beta{1 + 2λ/b, 1 + 2(1− λ)/b} random variable and

G(λ) =
B
(
2λ
b + 1, 2(1−λ)b + 1

)
B
(
λ
b + 1, 1−λb + 1

)2 .

The final result is derived from a Taylor expansion and the asymptotic properties of G(λ),
which is very analogous to Chen (2000) and therefore we skip the detail. �

The following lemma establishes the uniform convergence of the bias of the Beta kernel
estimator.

Lemma A.1. If the spectral density f is a continuous function on the interval (0, 1), then
for any compact I in (0, 1), the Beta kernel estimator (3) is such that

sup
λ∈I

∣∣∣IE(f̂(λ))− f(λ)
∣∣∣ −→ 0 as T →∞

provided that b = b(T )→ 0.

Proof. If µλ and σ2λ denote respectively the mean and the variance of the random variable
Z where Z has a Beta{1 + λ/b, 1 + (1 − λ)/b} distribution, then there exists a positive,
finite constant M such that µx = λ + b(1 − 2λ) + ∆1(λ), σ2λ = bλ(1 − λ) + ∆2(λ) and
|∆j(λ)| ≤Mb2 for j = 1 and 2 (see e.g. Johnson et al. (2000)).
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To prove the lemma, we first consider the approximation IE(f̂(λ)) by
∫ 1
0 Kb,λ(u)f(u)du

given in (9). Consider the following decomposition of the dominant term in (9):∣∣∣∣∫ 1

0
{f(t)− f(λ)}K{t, λ/b+ 1, (1− λ)/b+ 1}dt

∣∣∣∣
≤ 2

∫
|t−µλ|<δ

|f(t)− f(λ)|K{t, λ/b+ 1, (1− λ)/b+ 1}dt+ 2

∫ 1/2

µλ+δ
(. . .) + 2

∫ µλ−δ

0
(. . .)

= I + II + III.

and we now show the convergence to zero of the three terms.
Since f is uniformly continuous on I, for any ε > 0 there exists a δ > 0 such that

|f(t)− f(λ)| < ε for |λ− t| < δ. Therefore I ≤ ε for all b ≤ bIε.
Using Chebyshev’s inequality and the above bound for σ2λ we also get

II ≤ 4 Pr(Z − µλ > δ) sup
t>µλ+δ

|f(t)|

≤ 4

δ2
σ2λ sup

t
|f(t)|

≤ 1

δ2
(b+ 4Mb2) sup

t
|f(t)|

≤ ε

for all b ≤ bIIε .
To address the convergence of III we assume without loss of generality that f(t) > f(λ)

and that f(t) ∼ t−β for t close to the origin . If ξ denotes the Beta{λ/b−β+1, (1−λ)/b+1}
random variable, we then write

III ≤ 4

∫ µλ−δ

0
t−βK{t, λ/b+ 1, (1− λ)/b+ 1}dt

=
4B{λ/b− β + 1, (1− λ)/b+ 1}
B{λ/b+ 1, (1− λ)/b+ 1}

∫ µλ−δ

0
K{t, λ/b− β + 1, (1− λ)/b+ 1}dt

≤ 4B{λ/b− β + 1, (1− λ)/b+ 1}
B{λ/b+ 1, (1− λ)/b+ 1}

Var(ξ)

δ2

≤ ε

for b ≤ bIIIε , and because it is easy to show that Var(ξ) = bλ(1− λ) +O(b2).
Combining the three convergence that have been proved we get supx∈[0,1] |IE {fb(x)} −

f(x)| < 3ε for all b ≤ min(bIε, b
II
ε , b

III
ε ). �

Proof of Proposition 3.2. Since Lemma A.1 establishes a sufficient control of the bias
term, it remains to prove the weak convergence of the variation term supλ∈I |f̂(λ)−IE(f̂(λ))|.
Without loss of generality, we suppose that I = [η1, η2] where 0 < η1 < η2 < 1. The
derivative with respect to λ ∈ I of the beta kernel is given by

dKb,λ(t)

dλ
=

1

b
Kb,λ(t)

{
ln

(
t

1− t

)
+ ψ

(
1− λ
b

+ 1

)
− ψ

(
λ

b
+ 1

)}
where ψ is the digamma function and satisfies ψ(x+1) = ln(x)+(2x)−1−

∑∞
j=1(2j x

2j)−1B2j

with B2j beeing Bernoulli numbers (see Abramowitz & Stegun (1972) for more details).
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Also, from Chen (2000) there exists a positive, finite constant c1 such that Kb,λ(t) ≤
c1b
−1/2{λ(1− λ)}−1/2. We conclude that,∣∣∣∣dKb,λ(t)

dλ

∣∣∣∣ =
1

b
Kb,λ(t)

∣∣∣∣ln( t

1− t

)
+ ln

(
1− λ
λ

)
+
b

2

(
1

1− λ
− 1

λ

)
+O(b2)

∣∣∣∣
≤ C

b3/2

for some constant C depending on η1 and η2. Therefore, for λ and λ′ ∈ I we can write

|f̂(λ)− f̂(λ′)| = 1

T

T∑
j=1

|Kb,λ(ωj)−Kb,λ′(ωj)|IT (ωj)

≤ C

b3/2T
|λ− λ′|

T∑
j=1

IT (ωj).

Hence, if we control as above the smaller order approximation terms in the expectation,

|Ef̂(λ)− Ef̂(λ′)| ≤ E|f̂(λ)− f̂(λ′)|

≤ C

b3/2
|λ− λ′|{γ(0) + o(1)}

Let ε > 0 and consider a partition of the interval [η1, η2] into N = [b−ε−3/2] subintervals
{Ij} of equal length, with center λj . Then

sup
λ∈Ij
|f̂(λ)− Ef̂(λ)| ≤ |f̂(λj)− Ef̂(λj)|+

C

Nb3/2
{γ(0) + op(1)}

Therefore,

sup
λ∈I
|f̂(λ)− Ef̂(λ)| ≤ max

1≤j≤N
|f̂(λj)− Ef̂(λj)|+

C

Nb3/2
{γ(0) + op(1)}.

Using Proposition 3.1 and the Chebychev inequality, we also note that f̂(λ) − IEf̂(λ) =
OP (b−1/2T−1) for all λ ∈ I, and therefore maxj |f̂(λj) − Ef̂(λj)| = OP (Nb−1/2T−1) =
OP
(
b−2−εT−1/2

)
which gives the result. �

Proof of Proposition 3.3. The divergence of the spectral density at the origin implies
that for any C > 0 there exists δ > 0 such that f(t) > C for all t < δ. We first show
that the expectation of the Beta kernel estimator diverges at frequency zero when there is
a pole at the origin of the spectrum. In (9) we have computed the expectation for λ 6= 0;
the situation is slightly different at λ = 0. Still, we can write that

E(f̂(0)) =

∫ 1

0
Kb,0(u)f(u)du+R1 +R2

where R1 = O(T−1). To evaluate R2 we note that Kb,0(ωj) = b−1(1 + b)(1 − j/T )1/b

which is bounded by b−1(1 + b) and then we can apply the arguments of the above proof
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of Proposition 3.1 on the pooled periodogram in order to show that R2 = o(1) under the
constraints on b stated in the proposition. Therefore, for δ sufficiently small,

IE(f̂(0)) = b−1(1 + b)

∫ 1

0
(1− u)1/bf(u)du+ o(1)

> b−1(1 + b)C

∫ δ

0
(1− u)1/bdu+ o(1)

> C(1− (1− δ)1/b+1) + o(1).

The first term of the last expression converges to C as b tends to zero, which proves the
divergence of IE(f̂(0)). To show the convergence in probability, we again use the Chebychev
inequality and Proposition 3.1: for any ε > 0 and for a sequence λ such that λ/b→ κ,

P (|f̂(λ)− IEf̂(λ)| > ε) = O

(
1

Tb1+2β

)
= o(1).

Now using the fact that Kb,λ(t)→ Kb,0(t), as λ→ 0, we obtain∣∣∣∣∫ 1

0
Kb,λ(u)f(u)du−

∫ 1

0
Kb,0(u)f(u)du

∣∣∣∣ = o(1), asλ→ 0.

Hence, IEf̂(λ)→ IEf̂(0), as λ→ 0. Which proves the announced result. �

Proof of Corollary 3.1. Using again that Kb,0(ωj) = b−1(1 + b)(1− j/T )1/b we can write

|IE(f̂(0))− f(0)| ≤ b+ 1

b

∫ 1

0
(1− t)1/b|f(t)− f(0)|+ o(1).

Since f is continuous on the right side of 0, for any ε > 0 there exists a δ > 0 such that
|f(t)− f(0)| < ε for t < δ. Splitting the integral over [0, 1] in [0, δ]∪ [δ, 1], we get the bound

ε
b+ 1

b
[1− (1− δ)1+1/b] + 2M(1− δ)1+1/b

where M := supt∈[0,1] |f(t)|. Since b → 0 and the bound holds for every ε > 0, we get

|IE(f̂(0)) − f(0)| = o(1). Finally, as in the proof Proposition 3.3, we conlude with the
Chebychev inequality and Proposition 3.1 that lead to P (|f̂(0)−IEf̂(0)| > ε) = O(b−1T−1),
and get the stated result. �

Proof of Proposition 3.4. We start by proving the relative convergence of the bias term,
that is |{IE(f̂(λ))− f(λ)}/f(λ)| −→ 0 as λ/b→ κ. We proceed as in the beginning of the
proof of Lemma A.1. Omitting the negligible terms, we use the decomposition∣∣∣∣∣IE(f̂(λ))− f(λ)

f(λ)

∣∣∣∣∣
≤ 2

∫
|t−µλ|<δ

|f(t)− f(λ)|
f(λ)

K{t, λ/b+ 1, (1− λ)/b+ 1}dt+ 2

∫ 1

µλ+δ
(. . .) + 2

∫ µλ−δ

0
(. . .)

= I + II + III.
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in which I ≤ ε for all b ≤ bIε and II ≤ ε for all b ≤ bIIε . The treatment of the term III is not
as in Lemma A.1. Using Taylor expansion around λ and that f ′(λ) = O(λ−β−1) for small
value of λ, we otain

III ' |f ′(λ)|
f(λ)

∫ µλ−δε

0
(λ− t)K{t, λ/b+ 1, (1− λ)/b+ 1}dt

≤ |λf ′(λ)|
f(λ)

V ar(ξλ)

δ2ε
(Chebyshev inequality)

≤ ε

for all b ≤ bIIIε , where ξ is a Beta{λ/b− β + 1, (1− λ)/b+ 1} random variable which is such
that Var(ξ) = bλ(1− λ) +O(b2). By combining the three terms, the bias term is bounded
by 3ε for all b ≤ min(bIε, b

II
ε , b

III
ε ).

Finally, we control the convergence of the variation term using the Chebychev’s inequality.
Indeed for λ such that λ/b→ κ

P

(
|f̂(λ)− IE(f̂(λ))|

f(λ)
> ε

)
≤ Var(f̂(λ))

f(λ)2ε2

=
C(κ)

Tbf(λ)2ε2
{f(λ)2 +O(T−1)}

= OP (b−1T−1),

which implies the weak convergence of the variation term, and therefore ends the proof. �
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