287 research outputs found

    An Essential Farnesylated Kinesin in Trypanosoma brucei

    Get PDF
    Kinesins are a family of motor proteins conserved throughout eukaryotes. In our present study we characterize a novel kinesin, KinesinCaaX, orthologs of which are only found in the kinetoplastids and not other eukaryotes. KinesinCaaX has the CVIM amino acids at the C-terminus, and CVIM was previously shown to be an ideal signal for protein farnesylation in T. brucei. In this study we show KinesinCaaX is farnesylated using radiolabeling studies and that farnesylation is dependent on the CVIM motif. Using RNA interference, we show KinesinCaaX is essential for T. brucei proliferation. Additionally RNAi KinesinCaaX depleted T. brucei are 4 fold more sensitive to the protein farneysltransferase (PFT) inhibitor LN-59, suggesting that KinesinCaaX is a target of PFT inhibitors' action to block proliferation of T. brucei. Using tetracycline-induced exogenous tagged KinesinCaaX and KinesinCVIMdeletion (non-farnesylated Kinesin) expression lines in T. brucei, we demonstrate KinesinCaaX is farnesylated in T. brucei cells and this farnesylation has functional effects. In cells expressing a CaaX-deleted version of Kinesin, the localization is more diffuse which suggests correct localization depends on farnesylation. Through our investigation of cell cycle, nucleus and kinetoplast quantitation and immunofluorescence assays an important role is suggested for KinesinCaaX in the separation of nuclei and kinetoplasts during and after they have been replicated. Taken together, our work suggests KinesinCaaX is a target of PFT inhibition of T. brucei cell proliferation and KinesinCaaX functions through both the motor and farnesyl groups

    Vaccine-Linked Chemotherapy Approach: Additive Effects of Combining the Listeria monocytogenes-Based Vaccine Lm3Dx_NcSAG1 With the Bumped Kinase Inhibitor BKI-1748 Against Neospora caninum Infection in Mice.

    Get PDF
    The apicomplexan parasite Neospora (N.) caninum causes neosporosis in numerous host species. There is no marketed vaccine and no licensed drug for the prevention and/or treatment of neosporosis. Vaccine development against this parasite has encountered significant obstacles, probably due to pregnancy-induced immunomodulation hampering efficacy, which has stimulated the search for potential drug therapies that could be applied to limit the effects of neosporosis in dams as well as in offspring. We here investigated, in a pregnant neosporosis mouse model, the safety and efficacy of a combined vaccination-drug treatment approach. Mice were vaccinated intramuscularly with 1 × 107 CFU of our recently generated Listeria (L.) monocytogenes vaccine vector expressing the major N. caninum tachyzoite surface antigen NcSAG1 (Lm3Dx_SAG1). Following mating and experimental subcutaneous infection with 1 × 105 N. caninum (NcSpain-7) tachyzoites on day 7 of pregnancy, drug treatments were initiated using the bumped kinase inhibitor BKI-1748 at 20 mg/kg/day for 5 days. In parallel, other experimental groups were either just vaccinated or only treated. Dams and offspring were followed-up until day 25 post-partum, after which all mice were euthanized. None of the treatments induced adverse effects and neither of the treatments affected fertility or litter sizes. Cerebral infection in dams as assessed by real-time PCR was significantly reduced in the vaccinated and BKI-1748 treated groups, but was not reduced significantly in the group receiving the combination. However, in non-pregnant mice, all three treatment groups exhibited significantly reduced parasite burdens. Both, vaccination as well BKI-1748 as single treatment increased pup survival to 44 and 48%, respectively, while the combination treatment led to survival of 86% of all pups. Vertical transmission in the combination group was 23% compared to 46 and 50% in the groups receiving only BKI-treatment or the vaccine, respectively. In the dams, IgG titers were significantly reduced in all treatment groups compared to the untreated control, while in non-pregnant mice, IgG titers were reduced only in the group receiving the vaccine. Overall, vaccine-linked chemotherapy was more efficacious than vaccination or drug treatment alone and should be considered for further evaluation in a more relevant experimental model

    NMR structure of an acyl-carrier protein from Borrelia burgdorferi

    Get PDF
    The high-resolution NMR structure of the acyl-carrier protein from the pathogen B. burgdorferi determined to a r.m.s. deviation of 0.4 Å over the protein backbone is reported. The NMR structure was determined using multidimensional NMR spectroscopy and consists of four α-helices and two 310-helices. Structural comparison reveals that this protein is highly similar to the acyl-carrier protein from A. aeolicus

    Common Molecular Targets of a Quinolone Based Bumped Kinase Inhibitor in Neospora caninum and Danio rerio.

    Get PDF
    Neospora caninum is an apicomplexan parasite closely related to Toxoplasma gondii, and causes abortions, stillbirths and/or fetal malformations in livestock. Target-based drug development has led to the synthesis of calcium-dependent protein kinase 1 inhibitors, collectively named bumped kinase inhibitors (BKIs). Previous studies have shown that several BKIs have excellent efficacy against neosporosis in vitro and in vivo. However, several members of this class of compounds impair fertility in pregnant mouse models and cause embryonic malformation in a zebrafish (Danio rerio) model. Similar to the first-generation antiprotozoal drug quinine, some BKIs have a quinoline core structure. To identify common targets in both organisms, we performed differential affinity chromatography with cell-free extracts from N. caninum tachyzoites and D. rerio embryos using the 5-aminopyrazole-4-carboxamide (AC) compound BKI-1748 and quinine columns coupled to epoxy-activated sepharose followed by mass spectrometry. BKI-binding proteins of interest were identified in eluates from columns coupled to BKI-1748, or in eluates from BKI-1748 as well as quinine columns. In N. caninum, 12 proteins were bound specifically to BKI-1748 alone, and 105 proteins, including NcCDPK1, were bound to both BKI-1748 and quinine. For D. rerio, the corresponding numbers were 13 and 98 binding proteins, respectively. In both organisms, a majority of BKI-1748 binding proteins was involved in RNA binding and modification, in particular, splicing. Moreover, both datasets contained proteins involved in DNA binding or modification and key steps of intermediate metabolism. These results suggest that BKI-1748 interacts with not only specific targets in apicomplexans, such as CDPK1, but also with targets in other eukaryotes, which are involved in common, essential pathways

    Resistance to a protein farnesyltransferase inhibitor in Plasmodium falciparum

    Get PDF
    The post-translational farnesylation of proteins serves to anchor a subset of intracellular proteins to membranes in eukaryotic organisms and also promotes protein-protein interactions. Inhibition of protein farnesyltransferase (PFT) is lethal to the pathogenic protozoa Plasmodium falciparum. Parasites were isolated that were resistant to BMS-388891, a tetrahydroquinoline (THQ) PFT inhibitor. Resistance was associated with a 12-fold decrease in drug susceptibility. Genotypic analysis revealed a single point mutation in the beta subunit in resistant parasites. The resultant tyrosine 837 to cysteine alteration in the beta subunit corresponded to the binding site for the THQ and peptide substrate. Biochemical analysis of Y837C-PFT demonstrated a 13-fold increase in BMS-388891 concentration necessary for inhibiting 50% of the enzyme activity. These data are consistent with PFT as the target of BMS-388891 in P. falciparum and suggest that PFT inhibitors should be combined with other antimalarial agents for effective therapy

    Conducting clinical trials in sub-Saharan Africa: challenges and lessons learned from the Malawi Cryptosporidium study

    Get PDF
    Background An effective drug to treat cryptosporidial diarrhea in HIV-infected individuals is a global health priority. Promising drugs need to be evaluated in endemic areas which may be challenged by both lack of resources and experience to conduct International Committee of Harmonisation-Good Clinical Practice (ICH-GCP)-compliant clinical trials. Methods We present the challenges and lessons learned in implementing a phase 2A, randomized, double-blind, placebo-controlled trial of clofazimine, in treatment of cryptosporidiosis among HIV-infected adults at a single site in Malawi. Results Primary challenges are grouped under study initiation, study population, study implementation, and cultural issues. The lessons learned primarily deal with regulatory system and operational barriers, and recommendations can be applied to other human experimental trials in low- and middle-income countries, specifically in sub-Saharan Africa. Conclusion This study demonstrated that initiating and implementing human experimental trials in sub-Saharan Africa can be challenging. However, solutions exist and successful execution requires careful planning, ongoing evaluation, responsiveness to new developments, and oversight of all trial operations

    A comparative study of eight serological methods shows that spike protein-based ELISAs are the most accurate tests for serodiagnosing SARS-CoV-2 infections in cats and dogs

    Get PDF
    IntroductionCoronavirus disease 2019 (COVID-19) is an infectious zoonotic disease caused by SARS-CoV-2. Monitoring the infection in pets is recommended for human disease surveillance, prevention, and control since the virus can spread from people to animals during close contact. Several diagnostic tests have been adapted from humans to animals, but limited data on the validation process are available.MethodsHerein, the first comparative study of six “in house” and two commercial serological tests developed to monitor SARS-CoV-2 infection in pets was performed with a well-coded panel of sera (61 cat sera and 74 dog sera) with a conservative criterion (viral seroneutralisation and/or RT–qPCR results) as a reference. Four “in house” tests based on either the RBD fragment of the spike protein (RBD-S) or the N-terminal fragment of the nucleoprotein (N) were developed for the first time. The analytical specificity (ASp) of those tests that showed the best diagnostic performance was assessed. The validation included the analysis of a panel of sera obtained pre-pandemic from cats and dogs infected with other coronaviruses to determine the analytical Sp (17 cat sera and 41 dog sera).Results and discussionELISAS based on the S protein are recommended in serosurveillance studies for cats (RBD-S SALUVET ELISA, ELISA COVID UNIZAR and INgezim® COVID 19 S VET) and dogs (INgezim® COVID 19 S VET and RBD-S SALUVET ELISA). These tests showed higher diagnostic sensitivity (Se) and DSp in cats (>90%) than in dogs. When sera obtained prior to the pandemic and from animals infected with other coronaviruses were analyzed by RBD-S and N SALUVET ELISAs and INgezim® COVID 19 S VET, a few cross reactors or no cross reactions were detected when dog and cat sera were analyzed by tests based on the S protein, respectively. In contrast, the number of cross reactions increased when the test was based on the N protein. Thus, the use of tests based on the N protein was discarded for serodiagnosis purposes. The results obtained revealed the most accurate serological tests for each species. Further studies should attempt to improve the diagnostic performance of serological tests developed for dogs
    corecore