203 research outputs found
Search for Galactic Core-collapse Supernovae in a Decade of Data Taken with the IceCube Neutrino Observatory
The IceCube Neutrino Observatory has been continuously taking data to search for ( – )0.5 10 s long neutrino bursts
since 2007. Even if a Galactic core-collapse supernova is optically obscured or collapses to a black hole instead of
exploding, it will be detectable via the ( )10 MeV neutrino burst emitted during the collapse. We discuss a search for
such events covering the time between 2008 April 17 and 2019 December 31. Considering the average data taking
and analysis uptime of 91.7% after all selection cuts, this is equivalent to 10.735 yr of continuous data taking. In order
to test the most conservative neutrino production scenario, the selection cuts were optimized for a model based on an
8.8 solar mass progenitor collapsing to an O–Ne–Mg core. Conservative assumptions on the effects of neutrino
oscillations in the exploding star were made. The final selection cut was set to ensure that the probability to detect
such a supernova within the Milky Way exceeds 99%. No such neutrino burst was found in the data after performing
a blind analysis. Hence, a 90% C.L. upper limit on the rate of core-collapse supernovae out to distances of ≈25 kpc
was determined to be 0.23 yr−1
. For the more distant Magellanic Clouds, only high neutrino luminosity supernovae
will be detectable by IceCube, unless external information on the burst time is available. We determined a model-
independent limit by parameterizing the dependence on the neutrino luminosity and the energy spectrum
Search for Continuous and Transient Neutrino Emission Associated with IceCube's Highest-Energy Tracks: An 11-Year Analysis
IceCube alert events are neutrinos with a moderate-to-high probability of
having astrophysical origin. In this study, we analyze 11 years of IceCube data
and investigate 122 alert events and a selection of high-energy tracks detected
between 2009 and the end of 2021. This high-energy event selection (alert
events + high-energy tracks) has an average probability of to be of
astrophysical origin. We search for additional continuous and transient
neutrino emission within the high-energy events' error regions. We find no
evidence for significant continuous neutrino emission from any of the alert
event directions. The only locally significant neutrino emission is the
transient emission associated with the blazar TXS~0506+056, with a local
significance of , which confirms previous IceCube studies. When
correcting for 122 test positions, the global p-value is and is
compatible with the background hypothesis. We constrain the total continuous
flux emitted from all 122 test positions at 100~TeV to be below ~(TeV cm s) at 90% confidence assuming an
spectrum. This corresponds to 4.5% of IceCube's astrophysical diffuse flux.
Overall, we find no indication that alert events, in general, are linked to
lower-energetic continuous or transient neutrino emission.Comment: Accepted by Ap
Cardiovascular disease and the role of oral bacteria
In terms of the pathogenesis of cardiovascular disease (CVD) the focus has traditionally been on dyslipidemia. Over the decades our understanding of the pathogenesis of CVD has increased, and infections, including those caused by oral bacteria, are more likely involved in CVD progression than previously thought. While many studies have now shown an association between periodontal disease and CVD, the mechanisms underpinning this relationship remain unclear. This review gives a brief overview of the host-bacterial interactions in periodontal disease and virulence factors of oral bacteria before discussing the proposed mechanisms by which oral bacterial may facilitate the progression of CVD
Search for Extended Sources of Neutrino Emission in the Galactic Plane with IceCube
The Galactic plane, harboring a diffuse neutrino flux, is a particularly
interesting target to study potential cosmic-ray acceleration sites. Recent
gamma-ray observations by HAWC and LHAASO have presented evidence for multiple
Galactic sources that exhibit a spatially extended morphology and have energy
spectra continuing beyond 100 TeV. A fraction of such emission could be
produced by interactions of accelerated hadronic cosmic rays, resulting in an
excess of high-energy neutrinos clustered near these regions. Using 10 years of
IceCube data comprising track-like events that originate from charged-current
muon neutrino interactions, we perform a dedicated search for extended neutrino
sources in the Galaxy. We find no evidence for time-integrated neutrino
emission from the potential extended sources studied in the Galactic plane. The
most significant location, at 2.6 post-trials, is a 1.7 sized
region coincident with the unidentified TeV gamma-ray source 3HWC J1951+266. We
provide strong constraints on hadronic emission from several regions in the
Galaxy.Comment: 13 pages, 4 figures, 5 tables including an appendix. Accepted for
publication in Astrophysical Journa
A Search for Coincident Neutrino Emission from Fast Radio Bursts with Seven Years of IceCube Cascade Events
This paper presents the results of a search for neutrinos that are spatially
and temporally coincident with 22 unique, non-repeating Fast Radio Bursts
(FRBs) and one repeating FRB (FRB121102). FRBs are a rapidly growing class of
Galactic and extragalactic astrophysical objects that are considered a
potential source of high-energy neutrinos. The IceCube Neutrino Observatory's
previous FRB analyses have solely used track events. This search utilizes seven
years of IceCube's cascade events which are statistically independent of the
track events. This event selection allows probing of a longer range of extended
timescales due to the low background rate. No statistically significant
clustering of neutrinos was observed. Upper limits are set on the
time-integrated neutrino flux emitted by FRBs for a range of extended
time-windows
Measurement of atmospheric neutrino mixing with improved IceCube DeepCore calibration and data processing
We describe a new data sample of IceCube DeepCore and report on the latest measurement of atmospheric neutrino oscillations obtained with data recorded between 2011–2019. The sample includes significant improvements in data calibration, detector simulation, and data processing, and the analysis benefits from a sophisticated treatment of systematic uncertainties, with significantly greater level of detail since our last study. By measuring the relative fluxes of neutrino flavors as a function of their reconstructed energies and arrival directions we constrain the atmospheric neutrino mixing parameters to be sin2θ23=0.51±0.05 and Δm232=2.41±0.07×10−3 eV2, assuming a normal mass ordering. The errors include both statistical and systematic uncertainties. The resulting 40% reduction in the error of both parameters with respect to our previous result makes this the most precise measurement of oscillation parameters using atmospheric neutrinos. Our results are also compatible and complementary to those obtained using neutrino beams from accelerators, which are obtained at lower neutrino energies and are subject to different sources of uncertainties
Searches for Neutrinos from LHAASO ultra-high-energy {\gamma}-ray sources using the IceCube Neutrino Observatory
Galactic PeVatrons are Galactic sources theorized to accelerate cosmic rays
up to PeV in energy. The accelerated cosmic rays are expected to interact
hadronically with nearby ambient gas or the interstellar medium, resulting in
{\gamma}-rays and neutrinos. Recently, the Large High Altitude Air Shower
Observatory (LHAASO) identified 12 {\gamma}-ray sources with emissions above
100 TeV, making them candidates for PeV cosmic-ray accelerators (PeVatrons).
While at these high energies the Klein-Nishina effect suppresses exponentially
leptonic emission from Galactic sources, evidence for neutrino emission would
unequivocally confirm hadronic acceleration. Here, we present the results of a
search for neutrinos from these {\gamma}-ray sources and stacking searches
testing for excess neutrino emission from all 12 sources as well as their
subcatalogs of supernova remnants and pulsar wind nebulae with 11 years of
track events from the IceCube Neutrino Observatory. No significant emissions
were found. Based on the resulting limits, we place constraints on the fraction
of {\gamma}-ray flux originating from the hadronic processes in the Crab Nebula
and LHAASOJ2226+6057
Limits on Neutrino Emission from GRB 221009A from MeV to PeV using the IceCube Neutrino Observatory
Gamma-ray bursts (GRBs) have long been considered a possible source of
high-energy neutrinos. While no correlations have yet been detected between
high-energy neutrinos and GRBs, the recent observation of GRB 221009A - the
brightest GRB observed by Fermi-GBM to date and the first one to be observed
above an energy of 10 TeV - provides a unique opportunity to test for hadronic
emission. In this paper, we leverage the wide energy range of the IceCube
Neutrino Observatory to search for neutrinos from GRB 221009A. We find no
significant deviation from background expectation across event samples ranging
from MeV to PeV energies, placing stringent upper limits on the neutrino
emission from this source.Comment: Version in ApJ Letters Focus on the Ultra-luminous Gamma-Ray Burst
GRB 221009
IceCat-1: The IceCube Event Catalog of Alert Tracks
We present a catalog of likely astrophysical neutrino track-like events from the IceCube Neutrino Observatory. IceCube began reporting likely astrophysical neutrinos in 2016, and this system was updated in 2019. The catalog presented here includes events that were reported in real time since 2019, as well as events identified in archival data samples starting from 2011. We report 275 neutrino events from two selection channels as the first entries in the catalog, the IceCube Event Catalog of Alert Tracks, which will see ongoing extensions with additional alerts. The Gold and Bronze alert channels respectively provide neutrino candidates with a 50% and 30% probability of being astrophysical, on average assuming an astrophysical neutrino power-law energy spectral index of 2.19. For each neutrino alert, we provide the reconstructed energy, direction, false-alarm rate, probability of being astrophysical in origin, and likelihood contours describing the spatial uncertainty in the alert\u27s reconstructed location. We also investigate a directional correlation of these neutrino events with gamma-ray and X-ray catalogs, including 4FGL, 3HWC, TeVCat, and Swift-BAT
- …