20 research outputs found

    Studying the role of the strawberry Fra protein family in the flavonoid metabolism during fruit ripening

    Get PDF
    Strawberry fruits are highly appreciated worldwide due to their pleasant flavor and aroma and to the health benefits associated to their consumption. An important part of these properties is due to their content in secondary metabolites, especially phenolic compounds, of which flavonoids are the most abundant in the strawberry fruit. Although the flavonoid biosynthesis pathway is uncovered, little is known about its regulation. The strawberry Fra a (Fra) genes constitute a large family of homologs of the major birch pollen allergen Bet v 1 and for which no equivalents exist in Arabidopsis. Our group has shown that Fra proteins are involved in the formation of colored compounds in strawberries (Muñoz et al., 2010), which mainly depends on the production of certain flavonoids; that they are structurally homologs to the PYR/PYL/RCAR Arabidopsis ABA receptor, and that they are able to bind flavonoids (Casañal et al., 2013). With these previous results, our working hypothesis is that the Fra proteins are involved in the regulation of the flavonoids pathway. They would mechanistically act as the ABA receptor, binding a protein interactor and a ligand to regulate a signaling cascade and/or act as molecular carriers. The main objective of this research is to characterize the Fra family in strawberry and gain insight into their role in the flavonoid metabolism. By RNAseq expression analysis in ripening fruits we have identified transcripts for 10 members of the Fra family. Although expressed in all tissues analyzed, each family member presents a unique pattern of expression, which suggests functional specialization for each Fra protein. Then, our next approach was to identify the proteins that interact with Fras and their ligands to gain knowledge on the role that these proteins play in the flavonoids pathway. To identify the interacting partners of Fras we have performed a yeast two hybrid (Y2H) screening against cDNA libraries of strawberry fruits at the green and red stages. A protein that shares a 95% homology to the Heat stress transcription factor A-4-C like of Fragaria vesca (HSA4C) interacts specifically with Fra1 and not with other family members, which suggests functional diversification of Fra proteins in specific signaling pathways. The Y2H screening is not yet saturated, so characterization of other interacting proteins with other members of the Fra family will shed light on the functional diversity within this gene family. This research will contribute to gain knowledge on how the flavonoid pathway, and hence, the fruit ripening, is regulated in strawberry; an economically important crop but for which basic research is still very limited. References: Muñoz, C, et al. (2010). The Strawberry Fruit Fra a Allergen Functions in Flavonoid Biosynthesis. Molecular Plant, 3(1): 113–124. Casañal, A, et al (2013). The Strawberry Pathogenesis-related 10 (PR-10) Fra a Proteins Control Flavonoid Biosynthesis by Binding Metabolic Intermediates. Journal of Biological Chemistry, 288(49): 35322–35332.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Autophagy is required for strawberry fruit ripening

    Get PDF
    Autophagy is a catabolic and recycling pathway that maintains cellular homeostasis under normal growth and stress conditions. Two major types of autophagy, microautophagy and macroautophagy, have been described in plants. During macroautophagy, cellular content is engulfed by a double-membrane vesicle called autophagosome. This vesicle fuses its outer membrane with the tonoplast and releases the content into the vacuole for degradation. During certain developmental processes, autophagy is enhanced by induction of several autophagy-related genes (ATG genes). Autophagy in crop development has been studied in relation to leaf senescence, seed and reproductive development, and vascular formation. However, its role in fruit ripening has only been partially addressed. Strawberry is an important berry crop, representative of non-climacteric fruit. We have analyzed the occurrence of autophagy in developing and ripening fruits of the cultivated strawberry. Our data show that most ATG genes are conserved in the genome of the cultivated strawberry Fragaria x ananassa and they are differentially expressed along the ripening of the fruit receptacle. ATG8-lipidation analysis proves the presence of two autophagic waves during ripening. In addition, we have confirmed the presence of autophagy at the cellular level by the identification of autophagy-related structures at different stages of the strawberry ripening. Finally, we show that blocking autophagy either biochemically or genetically dramatically affects strawberry growth and ripening. Our data support that autophagy is an active and essential process with different implications during strawberry fruit ripening.This work has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie to VS-V grant agreement 844365 project FrATGaria: Identification of the role of autophagy during fruit ripening and stress resistance in Strawberry: Autophagy manipulation as a way to improve Strawberry fitness, by the Ministerio de Economía y Competitividad, co-financed by the European Regional Development Fund (grant BIO2017-82609-R) to MB and by the Plan Propio of the University of Malaga

    ttl mutants are impaired in cellulose biosynthesis under osmotic stress

    Get PDF
    As sessile organisms, plants require mechanisms to sense and respond to the challenging environment, that encompass both biotic and abiotic factors that results in differential development. In these conditions is essential to balance growth and stress responses. As cell walls shape plant growth, this differential growth response cause alterations to the plant cell wall and cellulose is a major component. Therefore, understanding the mechanisms that regulate cellulose biosynthesis is essential to develop strategies to improve plant production. Previous studies have shown that the GSK3 kinase BIN2 modulate cellulose biosynthesis through phosphorylating cellulose synthases and that the expression of cellulose synthases are regulated by Brassinosteroids. Our previous work reveals that the tetratricopeptide-repeat thioreoxin-like (TTL) TTL1, TTL3, and TTL4 genes, in addition to their reported role in abiotic stress tolerance, are positive regulators of BR signaling. We observe association of TTL3 with most core components in traducing BR signalling, such as LRR-RLK BRI1, BIN2 and the transcription factor BES1 that positively regulate cellulose biosynthesis. We show that ttl mutants are affected in cellulose biosynthesis, particularly in osmotic stress conditions. Furthermore, TTL3 associates with LRR-RLKs that have been shown to be important for cellulose biosynthesis such as FEI1 in the FEI1/FEI2/SOS5 pathway. We aim to investigate the mechanisms by which TTL proteins regulate cellulose biosynthesis using a combination of genetics, biochemical, and molecular and cell biology approaches. This work was supported by grants from: (1) Ministerio de Ciencia e Innovación BIO2014-55380-R, BIO2014-56153-REDT; (2) Ministerio de Economía, Industria y Competitividad (BES-2015-071256); (3) Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.This work was supported by grants from: (1) Ministerio de Ciencia e Innovación BIO2014-55380-R, BIO2014-56153-REDT; (2) Ministerio de Economía, Industria y Competitividad (BES-2015-071256); (3) Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Genetic determinants of Vitamin C content in higher plants

    Get PDF
    Ascorbic acid (AsA, VitC) is the most abundant water-soluble antioxidant in plants and it plays a plethora of biological roles including resistance to abiotic stress. Hence, including VitC as a trait to improve in breeding programs is not only a way to enhance food quality but also to increase resistance to expected environmental alterations due to global change like drought, salinity or heat. Although all components of the Smirnoff-Wheeler pathway of AsA in plants are known, little information is available about how their regulation at the biochemical and cellular levels is. We have generated a number of molecular tools such as tagged constructs, stable transgenics and mutant lines with the aim of getting detailed information about how this pathway operate in plants. We will present data on protein localization, interaction among different components and their role in affecting VitC levels using a heterologous system such as Nicotiana bethamiana. This research was supported by a grant from the Spanish Ministerio de Educación, Cultura y Deporte para la formación del Profesorado Universitario (FPU014/01974), as well as by a project funded by the Spanish Ministerio de Ciencia e Innovación (BIO2014-55380R; BIO2014-56153-REDT). We also acknowledge the support by the Plan Propio from University of Malaga, Campus de Excelencia Internacional de Andalucía.This research was supported by a grant from the Spanish Ministerio de Educación, Cultura y Deporte para la formación del Profesorado Universitario (FPU014/01974), as well as by a project funded by the Spanish Ministerio de Ciencia e Innovación (BIO2014-55380R; BIO2014-56153-REDT). We also acknowledge the support by the Plan Propio from University of Malaga, Campus de Excelencia Internacional de Andalucía

    Structural basis of the allergenicity to strawberries due to Fra a 1.02

    Get PDF
    Strawberry fruits are highly valued due to their flavor, aroma, and benefits for human health. Despite this, 30% of the population with food hypersensitivity also shows adverse reactions to strawberry (Franz-Oberdorf et al, 2016). The FaFra a 1 protein family, homologs of the major birch pollen allergen Bet v 1, is involved in this allergenicity to strawberry. By RNAseq we have identified transcripts for 18 members of the FaFra a 1 family (from 1.01 to 1.18) in strawberry fruits. Although expressed in all tissues analyzed, each family member presents a unique pattern of expression, which suggests functional specialization for each FaFra a 1 protein. FaFra a 1.02 (Fra2 from now on) is the most expressed one in red fruits and is also the most allergenic among the family members tested (Muñoz et al. 2010; Franz- Oberdorf et al, 2016). In order to understand the molecular bases of this allergenicity we crystalized Fra2 and obtained its structure by X-ray diffraction. Fra2 showed a very high structural homology to Bet v 1, and we asked whether the two proteins were recognized by the immune system in a similar way. For this, we generated five different mutant versions of Fra2 in sites described as important for allergenicity in Bet v 1 (Fernandes et al, 2016), and studied their potential allergenicity as well as their crystal structures. Three of the mutants had substitutions in loop 4 (E46R, D48R, E46/48A) and the other two facing the cavity (A141F and Q64W). Compared to Fra2, all the mutants showed a significant reduction in their capacity to be recognized by the serum of patients with allergies to Bet v 1, and their crystal structures revealed conformational changes in the Bet v 1- IgG interaction sites. Together, these results support that Fra2 and Bet v 1 have similar allergenic determinants We hope this research will aid in understanding how human IgGs interact with Fra2 and might help in the development of new cultivars with a lesser allergenic potential.Grants BIO2013-44199R and BES-2014-068723 (MINECO). The authors also acknowledge the support by the Plan Propio from University of Malaga, Campus de Excelencia Internacional de Andalucía

    Translation regulation of uORFs-containing genes in Arabidopsis

    Get PDF
    Translational regulation has long been recognized as a vital process in the cell responses to the environment and in the execution of developmental programs, yet still little is known about the selective translation of specific mRNAs and its regulation. By the implementation of the Ribo-Seq technology in Arabidopsis [1], we uncovered a translation regulation module in response to ethylene that involves the key-signalling gene EIN2, the 3´UTRs of EBF1 and 2 and the NMD machinery [2]. We now focus on the ead1,2 mutants, which present altered responses to ethylene and auxin. The two corresponding genes represent the likely orthologs of translation factors from yeast and humans, and this, together with their inferred roles in multiple response pathways, offer an excellent opportunity to investigate the role of signal integration at the translational level. EAD1 and 2 interact and Ribo-seq on ead1 revealed an accumulation of translating ribosomes in the 5´UTRs of uORF-containing genes and reduction in the levels of ribosomes in the main ORF. ead1 is also impaired in the translation of GFP when fused to WT 5´UTR of potential EAD1 targets but not when fused to uORF-less versions of the same 5´UTRs. Our hypothesis is that, under certain hormonal and/or environmental conditions, EAD1/2 work as a complex required for the efficient translation of mRNAs that have common structural and functional features. Our progress towards the identification of the conditions where the EAD1 regulation of translation is required will be presented. [1] Merchante C et al. Bio-Protocol, 6(21), 1–34. [2] Merchante C et al. (2015) Cell, 163(3): 684-697Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Deciphering the dynamics of metabolic pathways influencing by controlled atmosphere during post-harvest physiology of cultivated strawberry fruit

    Get PDF
    Strawberry (Fragaria × ananassa) fruit is highly appreciated due to its delicate aroma, flavor and nutritional value. However, fruits are highly perishable and deteriorate quickly at ambient temperature. Controlled atmosphere storage is commonly used to prevent fruit decay; however it affects fruit quality causing physiological disorders. In the present work, High-throughput metabolomics technologies allow the quantitation of (relative) metabolite levels and allow determine the metabolic dynamics associated with postharvest in different controlled atmosphere storage. Five varieties of strawberry fruits (F. ananassa cvs. Camarosa, Candonga, Amiga, Santa Clara, and Fortuna) with different aroma, taste, and postharvest behavior were stored at 4ºC in two different atmosphere compositions, i) 10% CO2 and ii) 0.35 ppm O3 at 0, 3, 6, and 10 days after harvesting and compared to fruits stored at 4ºC. Novel methods for analyzing the resulting multiple data tables revealed preserved dynamics of metabolic processes across species. We identify key metabolites, which prime the fruit to cope with different decay situations, which likely greatly accelerate the design and the improvement of plant breeding programs.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Ministerio de Ciencia e Innovación, Spain (Ramón and Cajal contract). Ministerio de Economía y Competitividad, through the Grants AGL2012-40066-CO2-02)

    Unraveling the mechanism of TTL genes in cellulose biosynthesis

    Get PDF
    As sessile organisms, plants require mechanisms to sense and respond to the challenging environment, that encompass both biotic and abiotic factors that results in differential development. In these conditions is essential to balance growth and stress responses. As cell walls shape plant growth, this differential growth response cause alterations to the plant cell wall where cellulose is the major component. Therefore, understanding the mechanisms that regulate cellulose biosynthesis is essential to develop strategies to improve plant production. In Arabidopsis, the TETRATRICOPEPTIDE THIOREDOXIN-LIKE (TTL) gene family is composed by four members (TTL1 to TTL4) and mutations in TTL1, TTL3, and TTL4 genes cause reduced growth under salt and osmotic stress due to defects in plant cell wall integrity. We observe association of TTL3 with most core components in traducing BR signalling, such as LRR-RLK BRI1 or GSK3 BIN2 that modulate cellulose biosynthesis through phosphorylating cellulose synthases. Here, we show that ttl mutants present defects in the plant cell wall, particularly in Isoxaben, salt or sucrose stress. Spinning disk microscopy in etiolated hypocotyls reveals that, TTL proteins are responsible for the cellulose synthase complex (CSC) stability in plasma membrane (PM) upon sucrose stress. Moreover, TTL3 associates with LRR-RLKs that have been shown to be important for cellulose biosynthesis such as FEI1 in the FEI1/FEI2/SOS5 pathway. We aim to investigate the mechanisms by which TTL proteins regulate CesA stability in PM under stress, using a combination of genetics, biochemical, and molecular and cell biology approaches.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. This work was supported by grants from: (1) Ministerio de Ciencia e Innovación BIO2014-55380-R, BIO2014-56153-REDT; (2) Ministerio de Economía, Industria y Competitividad (BES-2015-071256

    Deciphering Strawberry Ripening by Tissue Specific Gene Regulatory Networks

    Get PDF
    During ripening, fruits undergo a number of metabolic and physiological changes leading to softening and improvement of characters such as flavor and palatability. Insights into transcriptome changes during strawberry fruit ripening have been reported, but always using either complete fruits in the analysis or separating achenes and the fleshy part (receptacle). However, the receptacle is composed of heterogeneous cell types, each of them with different characteristics and functions. Hence, transcriptomic studies performed so far may have lost important regulatory elements which expression is low but important in a specific cell-type specific. In our study, we use Laser Capture Microdissection (LCM) technique for the isolation of cells from specific tissue types such as the epidermis, vascular bundles, cortex, and pith. Transcriptome profiling of these tissue types was performed by RNAseq. A gene co-expression analysis was performed by Weighted Correlation Network Analysis (WGCNA). Ontology analysis of each module showed wax biosynthesis as the main biological pathway enriched at the red epidermis specific module. In order to elucidate the putative regulatory elements that control the synthesis of waxes in this tissue, a Gene Regulatory Network (GRN) was generated using GENIST (de Luis Balaguer, 2017). As a result, we have identified a set of transcription factors that might regulate the expression of eceriferum genes and a fatty acid elongase necessary for wax biosynthesis in ripe epidermis. Ultimately, our results open the possibility of implementing novel targeted breeding approaches. Moreover, this work shows that LCM followed by RNAseq is a powerful tool that can be used to clarify the regulatory scenario of tissue-specific biological processes during strawberry ripening.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    corecore