28 research outputs found

    Mechanical Identities of RNA and DNA Double Helices Unveiled at the Single-Molecule Level

    Full text link
    [EN] Double-stranded (ds) RNA is the genetic material of a variety of viruses and has been recently recognized as a relevant molecule in cells for its regulatory role. Despite that the elastic response of dsDNA has been thoroughly characterized in recent years in single-molecule stretching experiments, an equivalent study with dsRNA is still lacking. Here, we have engineered long dsRNA molecules for their individual characterization contrasting information with dsDNA molecules of the same sequence. It is known that dsRNA is an A-form molecule unlike dsDNA, which exhibits B-form in physiological conditions. These structural types are distinguished at the single-molecule level with atomic force microscopy (AFM) and are the basis to understand their different elastic response. Force¿extension curves of dsRNA with optical and magnetic tweezers manifest two main regimes of elasticity, an entropic regime whose end is marked by the A-form contour- length and an intrinsic regime that ends in a low-cooperative overstretching transition in which the molecule extends to 1.7 times its A-form contour-length. DsRNA does not switch between the A and B conformations in the presence of force. Finally, dsRNA presents both a lower stretch modulus and overstretching transition force than dsDNA, whereas the electrostatic and intrinsic contributions to the persistence length are larger.This work was supported by grants from the Spanish Ministry of Science and Innovation (BFU2011-29038 and BFU2010-15703) and the Comunidad de Madrid (S2009/MAT/1507). IRA.-G. acknowledges a Ramon y Cajal contract from the Spanish Ministry of Science and Innovation (RYC-2007-01765). Work in the F.M.-H. laboratory was supported by a Starting Grant from the European Research Council (no. 206117) and a grant from the Spanish Ministry of Science and Innovation (FIS2011-24638). We thank M. S. Dillingham for kindly providing the pSP73-JY0 plasmid, M. Menendez for access to a spectropolarimeter, A. Monserrate for polylysine-AFM control experiments, and B. Ibarra for fruitful discussions.Herrero-Galán, E.; Fuentes-Perez. M.E.; Carrasco, C.; Valpuesta, J.; Carrascosa, J.; Moreno-Herrero, F.; Arias-Gonzalez, JR. (2013). Mechanical Identities of RNA and DNA Double Helices Unveiled at the Single-Molecule Level. Journal of the American Chemical Society. 135(1):122-131. https://doi.org/10.1021/ja3054755S122131135

    Viral nanomotors for packaging of dsDNA and dsRNA

    Get PDF
    While capsid proteins are assembled around single-stranded genomic DNA or RNA in rod-shaped viruses, the lengthy double-stranded genome of other viruses is packaged forcefully within a preformed protein shell. This entropically unfavourable DNA or RNA packaging is accomplished by an ATP-driven viral nanomotor, which is mainly composed of two components, the oligomerized channel and the packaging enzymes. This intriguing DNA or RNA packaging process has provoked interest among virologists, bacteriologists, biochemists, biophysicists, chemists, structural biologists and computational scientists alike, especially those interested in nanotechnology, nanomedicine, AAA+ family proteins, energy conversion, cell membrane transport, DNA or RNA replication and antiviral therapy. This review mainly focuses on the motors of double-stranded DNA viruses, but double-stranded RNA viral motors are also discussed due to interesting similarities. The novel and ingenious configuration of these nanomotors has inspired the development of biomimetics for nanodevices. Advances in structural and functional studies have increased our understanding of the molecular basis of biological movement to the point where we can begin thinking about possible applications of the viral DNA packaging motor in nanotechnology and medical applications

    Beyond the known functions of the CCR4-NOT complex in gene expression regulatory mechanisms

    No full text
    Large protein assemblies are usually the effectors of major cellular processes. The intricate cell homeostasis network is divided into numerous interconnected pathways, each controlled by a set of protein machines. One of these master regulators is the CCR4-NOT complex, which ultimately controls protein expression levels. This multisubunit complex assembles around a scaffold platform, which enables a wide variety of well-studied functions from mRNA synthesis to transcript decay, as well as other tasks still being identified. Solving the structure of the entire CCR4-NOT complex will help to define the distribution of its functions. The recently published three-dimensional reconstruction of the complex, in combination with the known crystal structures of some of the components, has begun to address this. Methodological improvements in structural biology, especially in cryoelectron microscopy, encourage further structural and protein-protein interaction studies, which will advance our comprehension of the gene expression machinery
    corecore