193 research outputs found
Calibration of the dynamic behaviour of incomplete structures in archeological sites: The case of Villa Diomede portico in Pompeii
This paper reports the research activities carried out on Villa Diomede in Pompeii, built during the "Pre-Roman period" (i.e. the 3rd century BC) and discovered between 1771 and 1774 during the archaeological excavations. It is one of the greatest private buildings of Pompeii and it is located on the western corner of the modern archeological site. Three levels compose the building: the ground floor, the lower quadriportico with a square plan and a series of colonnades on the four sides around the inner garden and the cryptoportico. Villa Diomede was damaged by the strong earthquake occurred in AD 63 that caused the collapse of the western pillars of the quadriportico and later damaged after the big eruption of Vesuvius in AD 79. In June 2015 a series of nondestructive tests (NDT) were carried out by the authors in order to obtain information on the state of conservation of the building and to assess its structural behavior. Direct and tomographic sonic pulse velocity tests, ground penetrating radar, endoscopies and operational modal analysis were performed on the remaining structural elements on the two levels of the Villa. The present paper reports the main outcomes and findings of ambient vibration tests implemented to extract the modal parameters in terms of eigenfrequencies, mode shapes and damping ratios. Operational modal analysis and output-only identification techniques were applied to single stone pillars of the quadriportico structure and then to the entire square colonnade of Villa Diomede. Results are then used to study the soil-structure interaction at a local level and extend the gained information for the numerical calibration of the whole structure. Thanks to this methodology a detailed model updating procedure of the quadriportico was performed to develop reliable numerical models for the implementation of advance structural and seismic analysis of this "incomplete" archaeological structure
Protection of cultural heritage buildings and artistic assets from seismic hazard: A hierarchical approach
The occurrence of natural disasters such as earthquakes represent a worldwide challenge in the conservation of cultural heritage (CH), which suffer from damage due to high vulnerability conditions. Therefore, the protection of CH from seismic hazard is of paramount importance. Damage and vulnerability assessment of CH and artistic assets play a key role in the identification of conservation strategies. Effective strategies require the stabilization of severely damaged buildings and the preventive improvement of constructions structural response to seismic actions. Although the operation of emergency inspections is meant to classify buildings on the basis of buildings residual seismic capacity, investment decisions in restoration and conservation strategies of such vulnerable structures must take into consideration tangible and intangible values of both building structures and artistic goods as well as must combine objectives of verifying structural safety standards and preserving cultural heritage significance. Damage and vulnerability assessment depend on different criteria, which, on the one hand, are related to buildings structural characteristics, materials, and geometrical properties. On the other hand, to the peculiarities and uniqueness of artworks and artistic goods present on structural elements. In this paper, an AHP (absolute) model is proposed to rank multi-criteria prioritization of protection and restoration interventions on a set of 15 churches, which were damaged by earthquakes, occurring in Italy in the last decades. In detail, in order to structure the decision problem, identify key factors, and define the hierarchy, we conducted an extensive literature review and interviewed a pool of experts. Focus groups were organized to develop the set of criteria and sub-criteria and validate the hierarchy by dynamic discussion
Operational modal analysis for the characterization of ancient water towers in Pompeii
In the framework of an investigation campaign carried out in June 2015 by the authors on four ancient water towers (10\u201320 BC) in the archaeological site of Pompeii, modal analysis and output-only identification techniques were employed to extract the dynamic properties in order to assess structural vulnerabilities and support numerical model updating.
The four investigated towers (selected among the fourteen present within the archaeological site) are free-standing structures at least 6 m tall, belonging to the Castellum Aquae, i.e. the ancient aqueducts system of the city. During the Roman Age, until the destruction of Pompeii due to the volcanic eruption in 79 AD, water towers provided fresh water to houses, palaces and villas. This particular type of structures are classified as no. 1, 2, 3 and 4 by archaeological literature: no. 1 and 4 are made of soft stone masonry (tuff, limestone), while no. 2 and 3 are composed by brickwork masonry.
The paper reports the outcomes of ambient vibration tests performed on four towers in terms of extracted modal parameters using various operational modal analysis techniques. Obtained data are then used to study numerically the soil-structure interaction problem and implement model updating procedures
Lidar data analyses for assessing the conservation status of the so-called baths-church in hierapolis of phrygia (TR)
The LiDAR technology has aroused considerable interest in the field of structural study of historical buildings, aimed at the structural assessment in the presence of different states of stresses and at the evaluation of the health status.
The interest is due mostly by the ability of generating models of the built structures being able to predetermine different levels of schematization, two-dimensional and three-dimensional, in order to be able to perform evaluation processes assigning simplified geometric contents that correspond to the physical reality of the artefacts.
This paper intends to report some results of these experiences applied in archaeological domain, to the so-called Baths-Church at Hierapolis in Phrygia (Pamukkale, TR). In particular, the generation of accurate models from dense clouds and their reduction to models with simplified geometries too, is explored, with the further aim of testing automated strategies for features detection and editing process that leads to appropriate models for visual and analytical structural assessment. The accuracy and density parameters of the LiDAR clouds will be analysed to derive orthophotos and continuous mesh models, both to obtain the best results from the application of research algorithms such as region growing to detect blocks, and to allow visual analysis on digital models and not on site.
The ability to determine with high accuracy both the size and the anomalies of the wall systems (out of plumb and other rotation or local mechanisms of collapse), together with the possibility of identifying the lay of the individual drywall blocks and also the signs of cracks and collapses, allow deriving suitable models both for FE (Finite Elements) analysis and DE (Discrete Elements) analysis, as well as analytical ones
The nero lucano pig breed: Recovery and variability
The Nero Lucano (NL) pig is a black coat colored breed characterized by a remarkable ability to adapt to the difficult territory and climatic conditions of Basilicata region in Southern Italy. In the second half of the twentieth century, technological innovation, agricultural evolution, new breeding methods and the demand for increasingly lean meat brought the breed almost to extinction. Only in 2001, thanks to local institutions such as: the Basilicata Region, the University of Basilicata, the Regional Breeders Association and the Medio Basento mountain community, the NL pig returned to populate the area with the consequent possibility to appreciate again its specific cured meat products. We analyzed the pedigrees recorded by the breeders and the Illumina Porcine SNP60 BeadChip genotypes in order to obtain the genetic structure of the NL pig. Results evidenced that this population is characterized by long mean generation intervals (up to 3.5 yr), low effective population size (down to 7.2) and high mean inbreeding coefficients (FMOL = 0.53, FROH = 0.39). This picture highlights the low level of genetic variability and the critical issues to be faced for the complete recovery of this population
LIDAR DATA ANALYSES FOR ASSESSING THE CONSERVATION STATUS OF THE SO-CALLED BATHS-CHURCH IN HIERAPOLIS OF PHRYGIA (TR)
The LiDAR technology has aroused considerable interest in the field of structural study of historical buildings, aimed at the structural assessment in the presence of different states of stresses and at the evaluation of the health status.The interest is due mostly by the ability of generating models of the built structures being able to predetermine different levels of schematization, two-dimensional and three-dimensional, in order to be able to perform evaluation processes assigning simplified geometric contents that correspond to the physical reality of the artefacts.This paper intends to report some results of these experiences applied in archaeological domain, to the so-called Baths-Church at Hierapolis in Phrygia (Pamukkale, TR). In particular, the generation of accurate models from dense clouds and their reduction to models with simplified geometries too, is explored, with the further aim of testing automated strategies for features detection and editing process that leads to appropriate models for visual and analytical structural assessment. The accuracy and density parameters of the LiDAR clouds will be analysed to derive orthophotos and continuous mesh models, both to obtain the best results from the application of research algorithms such as region growing to detect blocks, and to allow visual analysis on digital models and not on site.The ability to determine with high accuracy both the size and the anomalies of the wall systems (out of plumb and other rotation or local mechanisms of collapse), together with the possibility of identifying the lay of the individual drywall blocks and also the signs of cracks and collapses, allow deriving suitable models both for FE (Finite Elements) analysis and DE (Discrete Elements) analysis, as well as analytical ones.</p
Salt-Induced Deterioration on FRP-Brick Masonry Bond
In the past decades, several studies have shown how fiber reinforced polymer (FRP) composites are an effective technique to strengthen unreinforced brick masonry structures. However, very little is known about their durability against environmental aggression such as salt attack and freeze-thaw cycles, or elevated moisture content. This paper presents an investigation on influence of salt attack on the stress transfer between the FRP composite and the masonry substrate. In fact, it is well known that, in certain conditions, soluble salts crystallize within the pores of materials, leading to crystallization pressures that may overcome their tensile strength. To investigate this effect, FRP-masonry joints were subjected to salt crystallization cycles according to a conditioning procedure designed by the authors. After conditioning, direct shear tests were conducted on the masonry joints to investigate the interfacial bond between the substrate and the composite. Materials characterization was carried out in order correlate the results of the direct shear tests with the salt distribution within the specimens. For comparison, direct shear tests were conducted on FRP-masonry joints that were not subjected to any cycle and therefore used as control
Repair of composite-to-masonry bond using flexible matrix
The paper presents an experimental investigation on an innovative repair method, in which composite
reinforcements, after debonding, are re-bonded to the substrate using a highly deformable polymer. In order
to assess the effectiveness of this solution, shear bond tests were carried out on brick and masonry substrates within two Round Robin Test series organized within the RILEM TC 250-CSM: Composites for Sustainable strengthening of Masonry. Five laboratories from Italy, Poland and Portugal were involved. The shear bond performance of the reinforcement systems before and after repair were compared in terms of ultimate loads, load-displacement curves and strain distributions. The results showed that the proposed repair method may provide higher strength and ductility than stiff epoxy resins, making it an effective and cost efficient technique for several perspective structural applications
Fluctuations in glassy systems
We summarize a theoretical framework based on global time-reparametrization
invariance that explains the origin of dynamic fluctuations in glassy systems.
We introduce the main ideas without getting into much technical details. We
describe a number of consequences arising from this scenario that can be tested
numerically and experimentally distinguishing those that can also be explained
by other mechanisms from the ones that we believe, are special to our proposal.
We support our claims by presenting some numerical checks performed on the 3d
Edwards-Anderson spin-glass. Finally, we discuss up to which extent these ideas
apply to super-cooled liquids that have been studied in much more detail up to
present.Comment: 33 pages, 7 figs, contribution to JSTAT special issue `Principles of
Dynamical Systems' work-shop at Newton Institute, Univ. of Cambridge, U
- …