1,305 research outputs found

    Experimental Bell inequality violation without the postselection loophole

    Full text link
    We report on an experimental violation of the Bell-Clauser-Horne-Shimony-Holt (Bell-CHSH) inequality using energy-time entangled photons. The experiment is not free of the locality and detection loopholes, but is the first violation of the Bell-CHSH inequality using energy-time entangled photons which is free of the postselection loophole described by Aerts et al. [Phys. Rev. Lett. 83, 2872 (1999)].Comment: 4 pages, 3 figures, v2 minor correction

    Continuous trace measurement technique experimental test, phase 2 Final report

    Get PDF
    Performance and accuracy of continuous trace geometric model tested by satellite and station positioning experimen

    Pneumatic press equipped with the Vortex system for white grapes processing: First results

    Get PDF
    The interaction between mechanical, computer and electronic technologies offers nowadays highly innovative solutions to be applied to the oenological machinery industry. Grapes pressing for the extraction of must from the grapes has a fundamental role for obtaining wines with high quality. The pneumatic presses commonly used work with a discontinuous cycle, taking on average about 3 hours for the extraction of the juice from the grapes. During this period, the presence of oxygen in contact with grapes can modify the qualitative characteristics of the future wine. The aim of the research was to study the \u201cVortex System\u201d applied to a pneumatic press and to evaluate the quality of wines obtained in reduction. The study was carried out in a modern winery in the province of Palermo (Italy) using cv. Catarratto lucido grapes. The machine used in the tests was a pneumatic press with a capacity of 1,900 / 2,500 kg by Puleo Srl company (Italy), equipped with the patent "Vortex System". It consists in the recovery of the inert gas by means of a passage and recirculation apparatus during grapes pressing allowing the must extraction in inert and controlled atmosphere, the non-oxidation of the product and a re-use of the gaseous component. Two operating modes were applied: AP (Air Pressing) mode, the traditional pressing mode in presence of oxygen, and NP (Nitrogen Pressing) mode with the Vortex System, performed under inert gas with nitrogen recovery. The following analytical determinations were performed on wines in triplicates: alcohol [%/vol], density [g/l], sugar [g/l], pH, total acidity [g/l], volatile acidity [g/l], malic acid [g/l], citric acid [g/l], tartaric acid [g/l], potassium [g/l], glycerin [g/l], ashes [g/l], absorbance at 420, 520 and 620 nm, polyphenols [mg/l], catechins [mg/l], free sulfur dioxide [mg/l], total sulfur dioxide [mg/l]. The use of the pneumatic press equipped with the Vortex System allowed to obtain excellent values of volatile acidity, absorbance at 420 nm, catechins in white wines and a rich aromatic component both in primary and secondary aromas

    Bi-photon propagation control with optimized wavefront by means of Adaptive Optics

    Full text link
    We present an efficient method to control the spatial modes of entangled photons produced through SPDC process. Bi-photon beam propagation is controlled by a deformable mirror, that shapes a 404nm CW diode laser pump interacting with a nonlinear BBO type-I crystal. Thanks to adaptive optical system, the propagation of 808nm SPDC light produced is optimized over a distance of 2m. The whole system optimization is carried out by a feedback between deformable mirror action and entangled photon coincidence counts. We also demonstrated the improvement of the two-photon coupling into single mode fibers

    Functional characterization and structure-guided mutational analysis of the transsulfuration enzyme cystathionine γ-lyase from toxoplasma gondii

    Get PDF
    Sulfur-containing amino acids play essential roles in many organisms. The protozoan parasite Toxoplasma gondii includes the genes for cystathionine β-synthase and cystathionine γ-lyase (TgCGL), as well as for cysteine synthase, which are crucial enzymes of the transsulfuration and de novo pathways for cysteine biosynthesis, respectively. These enzymes are specifically expressed in the oocyst stage of T. gondii. However, their functionality has not been investigated. Herein, we expressed and characterized the putative CGL from T. gondii. Recombinant TgCGL almost exclusively catalyses the α,γ-hydrolysis of L-cystathionine to form L-cysteine and displays marginal reactivity toward L-cysteine. Structure-guided homology modelling revealed two striking amino acid differences between the human and parasite CGL active-sites (Glu59 and Ser340 in human to Ser77 and Asn360 in toxoplasma). Mutation of Asn360 to Ser demonstrated the importance of this residue in modulating the specificity for the catalysis of α,β-versus α,γ-elimination of L-cystathionine. Replacement of Ser77 by Glu completely abolished activity towards L-cystathionine. Our results suggest that CGL is an important functional enzyme in T. gondii, likely implying that the reverse transsulfuration pathway is operative in the parasite; we also probed the roles of active-site architecture and substrate binding conformations as determinants of reaction specificity in transsulfuration enzymes

    Hyperentangled mixed phased Dicke states: optical design and detection

    Full text link
    We present an experimental method to produce 4-qubit phased Dicke states, based on a source of 2-photon hyperentangled states. By introducing quantum noise in the multipartite system in a controlled way, we have tested the robustness of these states. To this purpose the entanglement of the resulting multipartite entangled mixed states has been verified by using a new kind of structural witness.Comment: 6 pages, 3 figure, supplementary information include

    Experimental verification of a novel system ID technique called PLID using a flexible 3-D structure

    Get PDF
    Presented below is a summary of the results obtained to date on the verification of a novel state space model identification technique called PLID (Pseudo Linear IDentification), given in Hopkins et al.1 This technique has several unique features that include: (1) optimal joint parameter and state estimation (that gives rise to its nonlinearities); (2) provisions for sensor, actuator, and state noise; (3) and it converges almost surely to the true plant parameters provided that the plant is linear, completely controllable/observable, strictly proper, time invariant, and all noise sources are zero mean white gaussian (ZMWG). Experiments carried out on a flexible, modally dense 3-D truss structure standing 4 feet tall have shown PLID to be a robust technique capable of managing significant deviations from the assumptions made to prove strict optimality. Using the 3 actuators and 3 sensors attached to the structure, models varying in size from 24 to 64 states have been used to approximate this infinite dimensional testbed in the frequency range between 50 to 500 Hz. Sensor signals with RMS levels of approximately 2 volts have been predicted by PLID to within 0.01 volts RMS

    Engineering a C-Phase quantum gate: optical design and experimental realization

    Full text link
    A two qubit quantum gate, namely the C-Phase, has been realized by exploiting the longitudinal momentum (i.e. the optical path) degree of freedom of a single photon. The experimental setup used to engineer this quantum gate represents an advanced version of the high stability closed-loop interferometric setup adopted to generate and characterize 2-photon 4-qubit Phased Dicke states. Some experimental results, dealing with the characterization of multipartite entanglement of the Phased Dicke states are also discussed in detail.Comment: accepted for publication on EPJ

    Polarization entangled state measurement on a chip

    Full text link
    The emerging strategy to overcome the limitations of bulk quantum optics consists of taking advantage of the robustness and compactness achievable by the integrated waveguide technology. Here we report the realization of a directional coupler, fabricated by femtosecond laser waveguide writing, acting as an integrated beam splitter able to support polarization encoded qubits. This maskless and single step technique allows to realize circular transverse waveguide profiles able to support the propagation of Gaussian modes with any polarization state. Using this device, we demonstrate the quantum interference with polarization entangled states and singlet state projection.Comment: Revtex, 5+2 pages (with supplementary information), 4+1 figure
    • …
    corecore