240 research outputs found

    Fiber-reinforced composites in fixed partial dentures

    Get PDF
    Fiber-reinforced composite resin (FRC) prostheses offer the advantages of good aesthetics, minimal invasive treatment, and an ability to bond to the abutment teeth, thereby compensating for less-than-optimal abutment tooth retention and resistance form. These prostheses are composed of two types of composite materials: fiber composites to build the framework and hybrid or microfill particulate composites to create the external veneer surface. This review concentrates on the use of fiber reinforcement in the fabrication of laboratory or chairsidemade composite-fixed partial dentures of conventional preparation. Other applications of FRC in dentistry are briefly mentioned. The possibilities fiber reinforcement technology offers must be emphasized to the dental community. Rather than limiting discussion to whether FRC prostheses will replace metal-ceramic or full-ceramic prostheses, attention should be focused on the additional treatment options brought by the use of fibers. However, more clinical experience is needed

    Effect of surface conditioning methods on the bond strength of luting cement to ceramics

    Get PDF
    Objectives. This study evaluated the effect of three different surface conditioning methods on the bond strength of a Bis-GMA based luting cement to six commercial dental ceramics. Methods. Six disc shaped ceramic specimens (glass ceramics, glass infiltrated alumina, glass infiltrated zirconium dioxide reinforced alumina) were used for each test group yielding a total number of 216 specimens. The specimens in each group were randomly assigned to one of the each following treatment conditions: (1) hydrofluoric acid etching, (2) airborne particle abrasion, (3) tribochemical silica coating. The resin composite luting cement was bonded to the conditioned and silanized ceramics using polyethylene molds. All specimens were tested at dry and thermocycled (6.000, 5-55degreesC, 30 s) conditions. The shear bond strength of luting cement to ceramics was measured in a universal testing machine (2 mm/min). Results. In dry conditions, acid etched glass ceramics exhibited significantly higher results (26.4-29.4 MPa) than those of glass infiltrated alumina ceramics (5.3-18.1 MPa) or zirconium dioxide (8.1 MPa) (ANOVA, P <0.001). Silica coating with silanization increased the bond strength significantly for high-alumina ceramics (8.5-21.8 MPa) and glass infiltrated zirconium dioxide ceramic (17.4 MPa) compared to that of airborne particle abrasion (ANOVA, P <0.001). Thermocycling decreased the bond strengths significantly after all of the conditioning methods tested. Significance. Bond strengths of the luting cement tested on the dental ceramics following surface conditioning methods varied in accordance with the ceramic types. Hydrofluoric acid gel was effective mostly on the ceramics having glassy matrix in their structures. Roughening the ceramic surfaces with air particle abrasion provided higher bond strengths for high-alumina ceramics and the values increased more significantly after silica coating/silanization. 2003 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved

    An overview of development and status of fiber-reinforced composites as dental and medical biomaterials

    Get PDF
    Fibr-reinforced composites (FRC) have been used successfully for decades in many fields of science and engineering applications. Benefits of FRCs relate to physical properties of FRCs and versatile production methods, which can be utilized. Conventional hand lamination of prefabricated FRC prepregs is utilized still most commonly in fabrication of dental FRC devices but CAD-CAM systems are to be come for use in certain production steps of dental constructions and medical FRC implants. Although metals, ceramics and particulate filler resin composites have successfully been used as dental and medical biomaterials for decades, devices made out of these materials do not meet all clinical requirements. Only little attention has been paid to FRCs as dental materials and majority of the research in dental field has been focusing on particulate filler resin composites and in medical biomaterial research to biodegradable polymers. This is paradoxical because FRCs can potentially resolve many of the problems related to traditional isotropic dental and medical materials. This overview reviews the rationale and status of using biostable glass FRC in applications from restorative and prosthetic dentistry to cranial surgery. The overview highlights also the critical material based factors and clinical requirement for the succesfull use of FRCs in dental reconstructions

    Polymer Composites for Bone Reconstruction

    Get PDF

    Resin-Bonded Fiber-Reinforced Composite for Direct Replacement of Missing Anterior Teeth: A Clinical Report

    Get PDF
    Missing anterior teeth is of serious concern in the social life of a patient in most of societies. While conventional fixed partial dentures and implant-supported restorations may often be the treatment of choice, fiber-reinforced composite (FRC) resins offer a conservative, fast, and cost-effective alternative for single and multiple teeth replacement. This paper presents two cases where FRC technology was successfully used to restore anterior edentulous areas in terms of esthetic values and functionality

    Resin adjustment of three-dimensional printed thermoset occlusal splints: Bonding properties - Short communication

    Get PDF
    Objectives: To evaluate the interfacial adhesion of an autopolymerizing acrylic resin to 3D printed thermoset occlusal splints compared to thermoplastic occlusal splints.Materials and methods: Cylinders made of an autopolymerizing acrylic resin were adhered to 3D printed thermoset and also to thermoplastic plates. A different surface treatment and three storage conditions were used: dry, 7 days water-storage and 14 days water-storage. Bond strength test (so-called shear-bond strength test) was afterward performed.Results: ANOVA (R2 = 0.764) revealed significant differences in bond strength according to material (p Conclusions: The bond strength of autopolymerizing acrylic resin to 3D printed thermoset plates is higher when compared to thermoplastic plates. Bonding between acrylic resin and 3D printed splints was high enough for clinical applications.conclusion</div

    Three-dimensional finite element analysis of anterior two-unit cantilever resin-bonded fixed dental prostheses

    Get PDF
    The aim of this study was to evaluate the influence of different framework materials on biomechanical behaviour of anterior two-unit cantilever resin-bonded fixed dental prostheses (RBFDPs). A three-dimensional finite element model of a two-unit cantilever RBFDP replacing amaxillary lateral incisorwas created. Five frameworkmaterialswere evaluated: direct fibre-reinforced composite (FRC-Z250), indirect fibre-reinforced composite (FRC-ES), gold alloy (M), glass ceramic (GC), and zirconia (ZI). Finite element analysis was performed and stress distribution was evaluated. A similar stress pattern, with stress concentrations in the connector area, was observed in RBFDPs for all materials.Maximal principal stress showed a decreasing order: ZI >M>GC> FRC-ES > FRCZ250. The maximum displacement of RBFDPs was higher for FRC-Z250 and FRC-ES than for M, GC, and ZI. FE analysis depicted differences in location of the maximum stress at the luting cement interface between materials. For FRC-Z250 and FRC-ES, the maximum stress was located in the upper part of the proximal area of the retainer, whereas, for M, GC, and ZI, the maximum stress was located at the cervical outline of the retainer. The present study revealed differences in biomechanical behaviour between all RBFDPs.The general observation was that a RBFDP made of FRC provided a more favourable stress distribution

    Development and characterization of ion-releasing fiber-reinforced flowable composite

    Get PDF
    Objective: This study aimed to develop and characterize an ion-releasing experimental fiber-reinforced flowable composite (Bio-SFRC) and dentin treatment solution made of poly(acrylic acid) (PAA) with a high molecular weight. In addition we also evaluated the interface structure and mineralization potential between the Bio-SFRC and dentin.Methods: Some mechanical properties (flexural properties and fracture toughness) of Bio-SFRC in comparison with commercial inert (G-aenial Flo X) and ion-releasing materials (ACTIVA-BioActive Base/Liner and Fuji II LC) were assessed (n = 8/group). Calcium-release at different time-points was measured during the first six weeks by using a calcium-ion selective electrode. Surface analysis of composites after being stored in simulated body fluid (SBF) was investigated by using SEM/EDS. Dentin disks (n = 50) were prepared from extracted sound teeth and demineralization was simulated by acid etching. SEM/EDS was used to evaluate the microstructure of dentin on the top surface and at interface with composites after being stored in SBF.Results: Bio-SFRC showed higher fracture toughness (1.6 MPa m1/2) (p 1/2), ACTIVA (1 MPa m1/2) and Fuji II LC (0.8 MPa m1/2). Accumulative calcium release after six weeks from Bio-SFRC (15 mg/l) was higher than other tested ion-releasing materials (≈ 6 mg/l). Mineralization was clearly seen at the interface between treated dentin and Bio-SFRC. None of the commercial tested materials showed signs of mineralization at the interface and dentinal tubules remained open.Significance: Developing such reinforced ion-releasing flowable composite and PAA solution might offer the potential for mineralization at the interface and inside the organic matrix of demineralized dentin.</p
    corecore