144 research outputs found

    Cuando el árbol si te deja ver el bosque: empleando biología de sistemas y variación natural para caracterizar marcadores de tolerancia/adaptación a estrés abiótico en especies agroforestales

    Get PDF
    Los cambios ambientales a nivel global esperados a raíz del escenario actual de cambio climático requieren ampliar nuestro conocimiento de los mecanismos de respuesta a estrés abiótico en especies forestales para asegurar tanto una correcta gestión de los espacios naturales como para mantener una producción forestal sostenible. En este sentido, los estudios basados en biología de sistemas, definida como el estudio combinado de distintos niveles ómicos (i.e. transcritos, proteínas, metabolitos) y posterior modelado de una respuesta a nivel sistémico, explotando además la variación natural (distintos fenotipos exhibidos por las distintas poblaciones de una misma especie) se perfila como una potente herramienta para avanzar en la caracterización fisiológica en especies pobremente descritas a nivel molecular como pueden ser las especies forestales. En esta charla analizaremos el género Pinus como caso de estudio, describiéndose el diseño experimental y flujo analítico que nos ha permitido caracterizar nuevos mecanismos de respuesta a estrés abiótico empleando una aproximación multi-ómica combinada con un análisis de biología de sistemas. Describiremos las técnicas analíticas básicas (secuenciación masiva y espectrometría de masas) así como el flujo de análisis bioinformático y diseño experimental que nos ha permitido definir nuevos biomarcadores de tolerancia y procesos fisiológicos de respuesta a estrés y a adaptación a distintos ambientes, casi del mismo modo que si estuviésemos trabajando con una especie modelo como pueda ser Arabidopsis.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Departamento de Bioquímica y Biología Molecular

    Dynamics of DNA methylation and Histone H4 acetylation during floral bud differentiation in azalea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability to control the timing of flowering is a key strategy for planning production in ornamental species such as azalea, however it requires a thorough understanding of floral transition. Floral transition is achieved through a complex genetic network and regulated by multiple environmental and endogenous cues. Dynamic changes between chromatin states facilitating or inhibiting DNA transcription regulate the expression of floral induction pathways in response to environmental and developmental signals. DNA methylation and histone modifications are involved in controlling the functional state of chromatin and gene expression.</p> <p>Results</p> <p>The results of this work indicate that epigenetic mechanisms such as DNA methylation and histone H4 acetylation have opposite and particular dynamics during the transition from vegetative to reproductive development in the apical shoots of azalea. Global levels of DNA methylation and histone H4 acetylation as well as immunodetection of 5-mdC and acetylated H4, in addition to a morphological study have permitted the delimitation of four basic phases in the development of the azalea bud and allowed the identification of a stage of epigenetic reprogramming which showed a sharp decrease of whole DNA methylation similar to that is defined in other developmental processes in plants and in mammals.</p> <p>Conclusion</p> <p>The epigenetic control and reorganization of chromatin seem to be decisive for coordinating floral development in azalea. DNA methylation and H4 deacetylation act simultaneously and co-ordinately, restructuring the chromatin and regulating the gene expression during soot apical meristem development and floral differentiation.</p

    Ultradian Metabolic Rhythm in the Diazotrophic Cyanobacterium Cyanothece sp. ATCC 51142.

    Get PDF
    The unicellular cyanobacterium Cyanothece sp. American Type Culture Collection (ATCC) 51142 is capable of performing oxygenic photosynthesis during the day and microoxic nitrogen fixation at night. These mutually exclusive processes are possible only by temporal separation by circadian clock or another cellular program. We report identification of a temperature-dependent ultradian metabolic rhythm that controls the alternating oxygenic and microoxic processes of Cyanothece sp. ATCC 51142 under continuous high irradiance and in high CO2 concentration. During the oxygenic photosynthesis phase, nitrate deficiency limited protein synthesis and CO2 assimilation was directed toward glycogen synthesis. The carbohydrate accumulation reduced overexcitation of the photosynthetic reactions until a respiration burst initiated a transition to microoxic N2 fixation. In contrast to the circadian clock, this ultradian period is strongly temperature-dependent: 17 h at 27 °C, which continuously decreased to 10 h at 39 °C. The cycle was expressed by an oscillatory modulation of net O2 evolution, CO2 uptake, pH, fluorescence emission, glycogen content, cell division, and culture optical density. The corresponding ultradian modulation was also observed in the transcription of nitrogenase-related nifB and nifH genes and in nitrogenase activities. We propose that the control by the newly identified metabolic cycle adds another rhythmic component to the circadian clock that reflects the true metabolic state depending on the actual temperature, irradiance, and CO2 availability
    corecore