35 research outputs found

    Mechanical properties of Pt monatomic chains

    Get PDF
    The mechanical properties of platinum monatomic chains were investigated by simultaneous measurement of an effective stiffness and the conductance using our newly developed mechanically controllable break junction (MCBJ) technique with a tuning fork as a force sensor. When stretching a monatomic contact (two-atom chain), the stiffness and conductance increases at the early stage of stretching and then decreases just before breaking, which is attributed to a transition of the chain configuration and bond weakening. A statistical analysis was made to investigate the mechanical properties of monatomic chains. The average stiffness shows minima at the peak positions of the length-histogram. From this result we conclude that the peaks in the length-histogram are a measure of the number of atoms in the chains, and that the chains break from a strained state. Additionally, we find that the smaller the initial stiffness of the chain is, the longer the chain becomes. This shows that softer chains can be stretched longer.Comment: 6 pages, 5 figure

    Quantum logic gates for coupled superconducting phase qubits

    Full text link
    Based on a quantum analysis of two capacitively coupled current-biased Josephson junctions, we propose two fundamental two-qubit quantum logic gates. Each of these gates, when supplemented by single-qubit operations, is sufficient for universal quantum computation. Numerical solutions of the time-dependent Schroedinger equation demonstrate that these operations can be performed with good fidelity.Comment: 4 pages, 5 figures, revised for publicatio

    Coupled phonon-ripplon modes in a single wire of electrons on the liquid-helium surface

    Full text link
    The coupled phonon-ripplon modes of the quasi-one-dimensional electron chain on the liquid helium sutface are studied. It is shown that the electron-ripplon coupling leads to the splitting of the collective modes of the wire with the appearance of low-frequency modes and high-frequency optical modes starting from threshold frequencies. The effective masses of an electron plus the associated dimple for low frequency modes are estimated and the values of the threshold frequencies are calculated. The results obtained can be used in experimental attempts to observe the phase transition of the electron wire into a quasi-ordered phase.Comment: 5 pages, 1 figure, Physical Review (in press

    Polaron effects in electron channels on a helium film

    Full text link
    Using the Feynman path-integral formalism we study the polaron effects in quantum wires above a liquid helium film. The electron interacts with two-dimensional (2D) surface phonons, i.e. ripplons, and is confined in one dimension (1D) by an harmonic potential. The obtained results are valid for arbitrary temperature (TT), electron-phonon coupling strength (α\alpha ), and lateral confinement (ω0\omega_{0}). Analytical and numerical results are obtained for limiting cases of TT, α\alpha , and ω0\omega_{0}. We found the surprising result that reducing the electron motion from 2D to quasi-1D makes the self-trapping transition more continuous.Comment: 6 pages, 7 figures, submitted to Phys. Rev.

    Sustainability assessment as problem structuring: three typical ways

    No full text
    Sustainability assessment (SA) is an increasingly popular term referring to a broad range of approaches to align decision-making with the principles of sustainability. Nevertheless, in public and private sectors sustainability results are still disappointing, and this paper reflects on this problem and proposes a way forward. We argue that, because sustainability issues are generally wicked problems (i.e. a ‘complex of interconnected factors in a pluralistic context’), effective assessments need to be reflexive about the definition of the issue and about the criteria for sustainable solutions. Based on a distinction of policy problems, we characterize SA as a form of problem structuring, and we distinguish three typical ways of problem structuring, corresponding to three different ways of integrating reflexivity in the assessment. We illustrate these routes in three examples. We discuss the way reflexivity is integrated in each example by discussing the mix of methods, SA process and epistemological balance. Rather than merely calling for more st akeholder participation, our aim is to call for more reflexivity integrated into the SA approach, and we conclude by proposing a process map for reflexive sustainability assessment to support this
    corecore