6 research outputs found

    Deletions of Immunoglobulin heavy chain and T cell receptor gene regions are uniquely associated with lymphoid blast transformation of chronic myeloid leukemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic myelogenous leukemia (CML) results from the neoplastic transformation of a haematopoietic stem cell. The hallmark genetic abnormality of CML is a chimeric <it>BCR/ABL1 </it>fusion gene resulting from the Philadelphia chromosome rearrangement t(9;22)(q34;q11). Clinical and laboratory studies indicate that the <it>BCR/ABL1 </it>fusion protein is essential for initiation, maintenance and progression of CML, yet the event(s) driving the transformation from chronic phase to blast phase are poorly understood.</p> <p>Results</p> <p>Here we report multiple genome aberrations in a collection of 78 CML and 14 control samples by oligonucleotide array comparative genomic hybridization. We found a unique signature of genome deletions within the immunoglobulin heavy chain (<it>IGH</it>) and T cell receptor regions (<it>TCR</it>), frequently accompanied by concomitant loss of sequences within the short arm regions of chromosomes 7 and 9, including <it>IKZF1</it>, <it>HOXA7</it>, <it>CDKN2A/2B</it>, <it>MLLT3</it>, <it>IFNA/B</it>, <it>RNF38</it>, <it>PAX5</it>, <it>JMJD2C </it>and <it>PDCD1LG2 </it>genes.</p> <p>Conclusions</p> <p>None of these genome losses were detected in any of the CML samples with myeloid transformation, chronic phase or controls, indicating that their presence is obligatory for the development of a malignant clone with a lymphoid phenotype. Notably, the coincidental deletions at <it>IGH </it>and <it>TCR </it>regions appear to precede the loss of <it>IKZF1 </it>and/or <it>p16 </it>genes in CML indicating a possible involvement of RAG in these deletions.</p

    p53 Aberrations do not predict individual response to fludarabine in patients with B-cell chronic lymphocytic leukaemia in advanced stages Rai III/IV

    Get PDF
    Abnormalities of p53 have been associated with short survival and non-response to therapy in chronic lymphocytic leukaemia (CLL). We have evaluated the rate of response to fludarabine as first-line therapy in 54 patients with advanced stage CLL, analysing the cytogenetic profile, aberrations in p53, including the methylation status of its promoter, and the immunoglobulin heavy-chain variable-region (IGVH) mutation status. According to the advanced stage of the disease in this series, 75% of patients presented genetic aberrations associated with poor prognosis: del(17p) and/or del(11q), and no-mutated IGVH genes. Ten patients (18.5%) had methylation in the promoter region of p53. Eighty-three per cent of patients treated achieved a response, with a high rate of complete remission (47.6%). Although we found a significant correlation between failures and the presence of p53 aberrations (P = 0.0065), either with methylation (P = 0.018) or deletion (P = 0.015), 64% of the patients with aberrations in this gene responded to treatment (11/17), suggesting that fludarabine induces high remission rates, even in these patients. This is the first time that the significance of p53 promoter methylation status is described in this pathology, and our data support that this epigenetic phenomenon could be involved in the pathogenesis and clinical evolution of CLL

    NUP98 is fused to HOXA9 in a variant complex t(7;11;13;17) in a patient with AML-M2

    Get PDF
    The t(7;11)(p15;p15.4) has been reported to fuse the NUP98 gene (11p15), a component of the nuclear pore complex, with the class-1 homeobox gene HOXA9 at 7p15. This translocation has been associated with myeloid leukemias, predominantly acute myeloid leukemia (AML) M2 subtype with trilineage myelodysplastic features, and with a poor prognosis. The derived fusion protein retains the FG repeat motif of NUP98 N-terminus and the homeodomain shared by the HOX genes, acting as an oncogenic transcription factor critical for leukemogenesis. We report here a new complex t(7;11)-variant, i.e., t(7;11;13;17)(p15;p15;p?;p1?2) in a patient with AML-M2 and poor prognosis. The NUP98-HOXA9 fusion transcript was detected by RT-PCR, suggesting its role in the malignant transformation as it has been postulated for other t(7;11)-associated leukemias. No other fusion transcripts involving the NUP98 or HOXA9 genes were present, although other mechanisms involving several genes on chromosomes 13 and 17 may also be involved. To our knowledge, this is the first t(7;11) variant involving NUP98 described in hematological malignancies

    Array CGH analysis at 60kb resolution of CML samples at advanced stage of disease

    No full text
    In spite of the universal presence of the BCR/ABL1 fusion gene, chronic myelogenous leukemia (CML) shows remarkable clinical and genetic diversity. The consequences of der(9)t(9;22) chromosome deletions, associated with poor survival, as well as the mechanism behind their formation remain unclear, as does our understanding of the molecular events driving the disease evolution. The presence of these deletions fuelled the expectations that cryptic genome-wide aberrations may be accountable for the disease progression. Following a comprehensive BAC aCGH analysis of 48 CML samples (Brazma et al., Genes, Chromosomes &amp; Cancer, 2007 in press) we report high-resolution oligo-nucleotide array study of a further 30 CML accelerated/ blast phase samples. We were unable to confirm the high frequency of particular single BAC imbalances (CNVs), reported both by ourselves and others, possibly due to the manufacturer’s array selection strategy. Never-the-less some of the CNVs and a wealth of new imbalances were obtained at 60kb resolution. It was possible to build a precise map of the amplicon affecting the sequences flanking the 3' ABL1 breakpoint site, which include the LAMC3 and NUP214 genes. The presence of this amplicon was associated with therapy resistance. When assessed, at a resolution of 60 kb, the deletions of the regions flanking the ABL1/BCR breakpoint showed novel features: 1. the genome loss affects preferentially both flanking sites as seen in 5 of the 6 ‘deleted’ samples and 2. the 120kb deletion identified is the smallest recorded so far. Most of the major cytogenetic features of the samples were confirmed and a number of cryptic genome imbalances were detected, from 120kb to 10Mb in size, involving regions rich in genes, some already implicated in the pathogenesis of CML. Finally, recurrent micro aberrations of several adjacent oligo-nucleotides affecting non-coding sequences were detected in as many as 2/3 of the samples
    corecore