8 research outputs found
Friction and Wear Characteristics of C/Si Bi-layer Coatings Deposited on Silicon Substrate by DC Magnetron Sputtering
The tribological behavior of carbon/silicon bi-layer coatings deposited on a silicon substrate by DC magnetron sputtering was assessed and compared to that of amorphous carbon and silicon coatings. The motivation was to develop a wear resistant coating for silicon using thin layers of amorphous carbon and silicon. Wear tests were conducted by sliding a stainless steel ball against the coating specimens under applied normal loads in the range of 20 * 50 mN. Results showed that the wear rate of the bi-layer coating was strongly dependent on the ratio of thickness between the carbon and silicon layers. The wear rate of the bi-layer coating with 25 nm thick carbon and 102 nm thick silicon layers was about 48 and 20 times lower than that of the single-layer amorphous carbon and amorphous silicon coating, respectively. In addition, the steady-state friction coefficient of the bi-layer coating could be decreased to 0.09 by optimizing the thickness of the layer. Finally, a model for the wear reduction mechanism of the carbon/silicon bi-layer coating was proposed
Effect of working gas pressure on interlayer mixing in magnetron-deposited Mo/Si multilayers
By methods of cross-sectional transmission electron microscopy and small-angle x-ray scattering (Ξ» = 0.154 nm) the influence of Ar gas pressure (1 to 4 mTorr) on the growth of amorphous interfaces in Mo/Si multilayers (MLs) deposited by DC magnetron sputtering is studied. The significant reduction in the ML period, which is evident as a volumetric contraction, is observed in MLs deposited at Ar pressure where the mean-free path for the sputtered atoms is comparable with the magnetronsubstrate distance. Some reduction in the thickness of the amorphous interlayers with Ar pressure increase is found, where the composition of the interlayers is enriched with molybdenum. The interface modification resulted in an increase in EUV reflectance of the Mo/Si ML
Π‘Π’Π Π£ΠΠ’Π£Π Π Π Π€ΠΠΠΠΠ«Π Π‘ΠΠ‘Π’ΠΠ ΠΠΠΠΠΠ‘ΠΠΠΠΠ«Π₯ Π ΠΠΠ’ΠΠΠΠΠΠ‘ΠΠΠ₯ ΠΠΠ ΠΠΠ W-Si
ΠΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΠ²ΡΠΊΠΎΠΉ Π΄ΠΈΡΡΠ°ΠΊΡΠΎΠΌΠ΅ΡΡΠΈΠΈ Π² ΠΆΠ΅ΡΡΠΊΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ (l~0,154 Π½ΠΌ) ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π° ΡΠ°Π·ΠΎΠ²Π°Ρ ΡΡΡΡΠΊΡΡΡΠ°, ΡΠΎΡΡΠ°Π² ΠΈ ΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»ΠΎΠΉΠ½ΡΡ
ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΠ²ΡΠΊΠΈΡ
Π·Π΅ΡΠΊΠ°Π» (ΠΠ Π) W/Si Ρ ΡΠΎΠ»ΡΠΈΠ½ΠΎΠΉ ΡΠ»ΠΎΠ΅Π² Π²ΠΎΠ»ΡΡΡΠ°ΠΌΠ° tW2,7 Π½ΠΌ ΡΠ»ΠΎΠΈ Π²ΠΎΠ»ΡΡΡΠ°ΠΌΠ° ΠΈΠΌΠ΅ΡΡ ΠΏΠΎΠ»ΠΈΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΡΡ (ΠΠ¦Π) ΡΡΡΡΠΊΡΡΡΡ, Π° ΠΏΡΠΈ tW<1,9 Π½ΠΌ ΠΎΠ½ΠΈ Π°ΠΌΠΎΡΡΠ½Ρ. ΠΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ sin2Y-ΠΌΠ΅ΡΠΎΠ΄Π° ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π² ΡΠΎΠ½ΠΊΠΈΡ
ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ»ΠΎΡΡ
Π²ΠΎΠ»ΡΡΡΠ°ΠΌΠ° (tW<10 Π½ΠΌ) ΠΌΠΎΠΆΠ΅Ρ ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΡΡΡ Π±ΠΎΠ»Π΅Π΅ 3 Π°Ρ.% Si. Π Π°ΡΡΡΠ³ΠΈΠ²Π°ΡΡΠΈΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ Π² ΡΠ»ΠΎΡΡ
ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π²ΠΎΠ»ΡΡΡΠ°ΠΌΠ° Π½Π΅ ΠΏΡΠ΅Π²ΡΡΠ°ΡΡ 1,1 ΠΠΠ°. ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΉ ΡΠ°Π΄ΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π°ΡΠΎΠΌΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΡΡΡΠ°Π½ΠΎΠ²ΠΈΡΡ, ΡΡΠΎ Π°ΠΌΠΎΡΡΠ½ΡΠ΅ ΡΠ»ΠΎΠΈ Π²ΠΎΠ»ΡΡΡΠ°ΠΌΠ° ΠΈΠΌΠ΅ΡΡ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π°ΡΠΎΠΌΠΎΠ², Π±Π»ΠΈΠ·ΠΊΠΎΠ΅ ΠΊ b-W. ΠΠΎ Π²ΡΠ΅Ρ
ΠΎΠ±ΡΠ°Π·ΡΠ°Ρ
Π·Π° ΡΡΠ΅Ρ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ Π½Π° ΠΌΠ΅ΠΆΡΠ°Π·Π½ΡΡ
Π³ΡΠ°Π½ΠΈΡΠ°Ρ
Π½Π°Π±Π»ΡΠ΄Π°Π΅ΡΡΡ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΈΠ»ΠΈΡΠΈΠ΄Π½ΡΡ
ΠΏΡΠΎΡΠ»ΠΎΠ΅ΠΊ, Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΡΠ΅Π³ΠΎ ΡΠ΅Π°Π»ΡΠ½Π°Ρ ΡΠΎΠ»ΡΠΈΠ½Π° ΡΠ»ΠΎΠ΅Π² Π²ΠΎΠ»ΡΡΡΠ°ΠΌΠ° ΠΌΠ΅Π½ΡΡΠ΅ Π½ΠΎΠΌΠΈΠ½Π°Π»ΡΠ½ΠΎΠΉ. ΠΠΌΠΎΡΡΠ½ΡΠ΅ ΡΠΈΠ»ΠΈΡΠΈΠ΄Π½ΡΠ΅ ΠΏΡΠΎΡΠ»ΠΎΠΉΠΊΠΈ, ΠΎΠ±ΡΠ·Π°ΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΡΠΌΠΈΡΡΡΡΠΈΠ΅ΡΡ Π½Π° ΡΡΠ°Π΄ΠΈΠΈ ΠΈΠ·Π³ΠΎΡΠΎΠ²Π»Π΅Π½ΠΈΡ ΠΠ Π, ΡΠΎΠ΄Π΅ΡΠΆΠ°Ρ Π΄ΠΈΡΠΈΠ»ΠΈΡΠΈΠ΄ Π²ΠΎΠ»ΡΡΡΠ°ΠΌΠ°. Π Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΎΡΠ°ΠΆΠ΄Π΅Π½ΠΈΡ Π΄ΠΈΡΠΈΠ»ΠΈΡΠΈΠ΄ ΠΌΠΎΠΆΠ΅Ρ ΠΈΠΌΠ΅ΡΡ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π°ΡΠΎΠΌΠΎΠ², Π±Π»ΠΈΠ·ΠΊΠΎΠ΅ Π»ΠΈΠ±ΠΎ ΠΊ ΡΠ΅ΡΡΠ°Π³ΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ ΡΠ°Π·Π΅, t-WSi2 (~0,6 Π½ΠΌ/Ρ.), Π»ΠΈΠ±ΠΎ ΠΊ Π³Π΅ΠΊΡΠ°Π³ΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ ΡΠ°Π·Π΅, h-WSi2 (~0,15 Π½ΠΌ/Ρ.). ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π° ΡΡΠΎΡΠ½Π΅Π½Π½Π°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ ΡΡΡΠΎΠ΅Π½ΠΈΡ Π°ΠΌΠΎΡΡΠ½ΡΡ
ΠΠ Π W/Si. ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Ρ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΡ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΈΠ»ΠΈΡΠΈΠ΄Π½ΡΡ
ΠΏΡΠΎΡΠ»ΠΎΠ΅ΠΊ, ΡΠΎΠ³Π»Π°ΡΠ½ΠΎ ΠΊΠΎΡΠΎΡΡΠΌ Π½ΠΈΠΆΠ½ΠΈΠ΅ ΡΠΈΠ»ΠΈΡΠΈΠ΄Π½ΡΠ΅ ΠΏΡΠΎΡΠ»ΠΎΠΉΠΊΠΈ (W-Π½Π°-Si) ΡΠΎΡΠΌΠΈΡΡΡΡΡΡ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ Π·Π° ΡΡΠ΅Ρ Π±Π°Π»Π»ΠΈΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠΈΠ²Π°Π½ΠΈΡ Π°ΡΠΎΠΌΠΎΠ² Π²ΠΎΠ»ΡΡΡΠ°ΠΌΠ° ΠΈ ΠΊΡΠ΅ΠΌΠ½ΠΈΡ, Π° Π²Π΅ΡΡ
Π½ΠΈΠ΅ β Π²ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ Π΄ΠΈΡΡΡΠ·ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠΈΠ²Π°Π½ΠΈΡ. Π‘Π΄Π΅Π»Π°Π½Π° ΠΎΡΠ΅Π½ΠΊΠ° ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² Π²Π·Π°ΠΈΠΌΠ½ΠΎΠΉ Π΄ΠΈΡΡΡΠ·ΠΈΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΈ ΡΡΡΠ°Π½ΠΎΠ²ΠΈΡΡ, ΡΡΠΎ ΠΎΡΠ°ΠΆΠ΄Π°Π΅ΠΌΠ°Ρ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΡ ΡΠ»ΠΎΠ΅Π² ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΡΠ°Π·ΠΎΠ³ΡΠ΅ΡΠ°, ΠΏΠΎ ΠΌΠ΅Π½ΡΡΠ΅ΠΉ ΠΌΠ΅ΡΠ΅, Π½Π° 250Β° Π²ΡΡΠ΅ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠΈ. ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Ρ ΠΏΡΡΠΈ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡ ΠΌΠ΅ΠΆΡΠ°Π·Π½ΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ
Recommended from our members
Single shot extreme ultraviolet laser imaging of nanostructures with wavelength resolution
We have demonstrated near-wavelength resolution microscopy in the extreme ultraviolet. Images of 50 nm diameter nanotubes were obtained with a single {approx}1 ns duration pulse from a desk-top size 46.9 nm laser. We measured the modulation transfer function of the microscope for three different numerical aperture zone plate objectives, demonstrating that 54 nm half-period structures can be resolved. The combination of near-wavelength spatial resolution and high temporal resolution opens myriad opportunities in imaging, such as the ability to directly investigate dynamics of nanoscale structures
Recommended from our members
Interdiffusion in Sc/Si multilayers
An understanding of interdiffusion in nano-scale multilayers is of great scientific and practical interest because intermixing is responsible for temporal and thermal instability of EUV and soft X-ray multilayer mirrors. In this paper we study the kinetics of silicide growth in Sc/Si layered coatings. It was found that an amorphous ScSi silicide forms at the scandium-silicon interface. The growth of the ScSi silicide layer obeys diffusion kinetics rather than a chemical reaction kinetics. The silicide growth is limited by the diffusion of Si atoms through the silicide layer towards the silicide-scandium interface where the chemical reaction takes place. As a result of a large asymmetry of interdiffusion the growth of the silicide occurs mainly at the silicide-scandium interface. The diffusion growth of the silicide deviates significantly from the classic parabolic law at the early stage of interdiffusion (Fig. 1). Such a nonlinear growth behavior can be explained with a relaxation model. The growth rate is maximal in the beginning of annealing due to a large amount of excess free volume in the as-deposited multilayer. During the annealing a relaxation processes occurs, and diffusion slows down. Eventually the growth rate is stabilized, and a parabolic regime of the silicide growth is observed