19 research outputs found

    Aerobic Dimerization of Ethyl 4‑Thienyl-3-ketobutanoate toward a Modifiable Photochromic Diarylethene Precursor

    No full text
    A unique chemical transformation, the base-induced aerobic dimerization of ethyl 4-(2,5-dimethylthiophen-3-yl)-3-ketobutanoate leading to photochromic diarylethene with a 4-hydroxy-4-methylcyclopent-2-ene-1-one as an ethene bridge, is described. This compound is easily subjected to various chemical modifications and can be used as a new diarylethene precursor to produce photoactive compounds with desired properties and functions

    Synthesis and Comparative Photoswitching Studies of Unsymmetrical 2,3-Diarylcyclopent-2-en-1-ones

    No full text
    Photochromic diarylethenes (DAEs) based on the unsymmetrical ethene “bridge” bearing heterocycles of the different nature (oxazole and thiophene) as aromatic moieties have been designed and the photoswitching properties have been studied. The comparative studies of the photochromic characteristics of unsymmetrical isomeric 2,3-diarylcyclopent-2-en-1-ones have shown that the isomers have different thermal stability, absorption maxima, and quantum yields. It was found that the unsymmetrical diaryl­cyclo­pentenone bearing at second position of the cyclopentenone ring the thiophene unit displays high thermally stability, hypsochromic shift of absorption maxima wavelengths of initial and cyclic forms, and high quantum yields of cyclization and cycloreversion reactions. The replacement of the carbonyl group with oxime leads to a reduction of the difference in the photochromic properties of these isomers and just as the reduction of the carbonyl group to the hydroxy-group negates this difference to zero. The intramolecular hydrogen bond formation in the oxime and hydroxy derivatives was confirmed by IR and <sup>1</sup>H NMR spectral analysis, but the increase of the quantum yields of the cyclization reaction in a nonpolar hexane is observed only in the case of hydroxy derivatives that can be explained by the formation of more rigid six-membered heterocycle in hydrogen bonding

    Copper(II)-Mediated Aerobic Synthesis of Imidazo­[1,2‑<i>a</i>]pyridines via Cascade Amino­methylation/Cyclo­isomerization of Alkynes

    No full text
    A single copper­(II)-catalyzed three-component cascade amino­methyla­tion/cyclo­isomeriza­tion of propiolates to form imidazo­[1,2-<i>a</i>]­pyridines was explored. A straightforward method was developed for the practical synthesis of functionalized imidazo­[1,2-<i>a</i>]­pyridines from benzaldehydes, 2-amino­pyridines, and propiolate derivatives catalyzed by Cu­(OAc)<sub>2</sub> hydrate in the presence of air. The protocol is marked by excellent yields, functional group tolerance, and, above all, adaptability to synthesize imidazo­[1,2-<i>a</i>]­pyridine-based drug molecules such as Alpidem

    Photochemical Rearrangement of Diarylethenes: Reaction Efficiency and Substituent Effects

    No full text
    In recent years, great synthetic potential of the photorearrangement of diarylethenes leading to naphthalene derivatives via a cascade process of photocyclization/[1,<i>n</i>]-H shift/cycloreversion has been demonstrated. In this work, first a multifaceted study of the influence of various factors on the efficiency of the photorearrangement of diarylethenes of furanone series containing benzene and oxazole derivatives as aryl residues has been carried out. The efficiency of this phototransformation (quantum yields) and the effect of methoxy substituents in the phenyl moiety have been studied. Despite the multistage process, the quantum yields of the photorearrangement are rather high (0.34–0.49). It has been found that the efficiency of photocyclization of diarylethenes increases with the introduction of electron-donating methoxy groups in the phenyl moiety. Using the DFT calculations, we have been able to estimate in the photoinduced isomer the distance between hydrogen atom and carbon atom to which it migrates in the result of the sigmatropic shift. For all studied diarylethenes, this value was 2.67–2.73 Å, which is less than the sum of van der Waals radii of carbon and hydrogen atoms (2.9 Å)

    Steroidal Pyrimidines and Dihydrotriazines as Novel Classes of Anticancer Agents against Hormone-Dependent Breast Cancer Cells

    No full text
    Most breast and prostate tumors are hormone-dependent, making it possible to use hormone therapy in patients with these tumors. The design of effective endocrine drugs that block the growth of tumors and have no severe side effects is a challenge. Thereupon, synthetic steroids are promising therapeutic drugs for the treatment of diseases such as hormone-dependent breast and prostate cancers. Here, we describe novel series of steroidal pyrimidines and dihydrotriazines with anticancer activities. A flexible approach to unknown pyrimidine and dihydrotriazine derivatives of steroids with selective control of the heterocyclization pattern is disclosed. A number of 18-nor-5α-androsta-2,13-diene[3,2-d]pyrimidine, androsta-2-ene[3,2-d]pyrimidine, Δ1, 3, 5(10)-estratrieno[16,17-d]pyrimidine, and 17-chloro-16-dihydrotriazine steroids were synthesized by condensations of amidines with β-chlorovinyl aldehydes derived from natural hormones. The synthesized compounds were screened for cytotoxicity against breast cancer cells and showed IC50 values of 7.4 μM and higher. Compounds were tested against prostate cancer cells and exhibited antiproliferative activity with IC50 values of 9.4 μM and higher comparable to that of cisplatin. Lead compound 4a displayed selectivity in ERα-positive breast cancer cells. At 10 μM concentration, this heterosteroid inhibited 50% of the E2-mediated ERα activity and led to partial ERα down-regulation. The ERα reporter assay and immunoblotting were supported by the docking study, which showed the probable binding mode of compound 4a to the estrogen receptor pocket. Thus, heterosteroid 4a proved to be a selective ERα modulator with the highest antiproliferative activity against hormone-dependent breast cancer and can be considered as a candidate for further anticancer drug development. In total, the synthesized heterosteroids may be considered as new promising classes of active anticancer agents

    Triaryl-Substituted Divinyl Ketones Cyclization: Nazarov Reaction versus Friedel–Crafts Electrophilic Substitution

    No full text
    The acid-catalyzed cyclization of a wide range of triaryl-substituted divinyl ketones has been studied. It was found that the reaction pathway strongly depends on the nature of the aryl substituent at the α-position to the carbonyl group. An electron-rich aromatic substituent promotes the reaction to proceed through the intramolecular Friedel–Crafts electrophilic substitution giving dihydro­naphthalene derivatives. In contrast, the presence of an electron-deficient substituent is favorable for the Nazarov 4π-conrotatory cyclization yielding triaryl-substituted cyclopentenones. The electrophilic substitution reaction was applied to thiophene and thiazole derivatives

    Structural and Spectral Properties of Photochromic Diarylethenes: Size Effect of the Ethene Bridge

    No full text
    The effect of the size of the ethene bridge on the structural and spectral properties of photochromic diarylethenes, which remains a poorly understood phenomenon, was studied as applied to diarylethenes containing unsymmetrical (cyclohexenone and cyclopentenone) and symmetrical (cyclohexene and cyclopentene) ethene bridges. Thiophene, oxazole, and imidazole derivatives were used as aryl moieties. An increase in the size of the ethene bridge in the cycloalkenone series was found to be accompanied by a hypsochromic shift of the absorption maximum of the photoinduced form, whereas no difference was found for cycloalkenes. A detailed analysis of the NMR spectra (including 2D experiments) revealed previously unknown effects associated with the existence of an intramolecular hydrogen bond (CH···N) between the six-membered ethene bridge and the azole substituents. The NMR experimental data obtained were confirmed by DFT quantum chemical calculations and X-ray analysis. It was found that an intramolecular hydrogen bond favors an increase of the quantum yield of the photocyclization reaction

    General Photoinduced Sequential Electrocyclization/[1,9]-Sigmatropic Rearrangement/Ring-Opening Reaction of Diarylethenes

    No full text
    A novel and efficient photochemical transformation of diarylethenes comprising a five-membered heterocyclic ring and phenyl moiety is described. This reaction provides a simple method for the preparation of functionalized naphthalene derivatives via photorearrangement reaction of diarylethenes, and the process is characterized by high efficiency that was determined by NMR monitoring. Some mechanistic aspects of this process have been also explored. It was found that the reaction includes tandem transformation of three basic processes: the photocyclization of the hexatriene system, [1,9]-sigmatropic rearrangement, and heterocyclic ring opening. Diarylethenes with different heterocycle moieties (thiophene, benzo­[<i>b</i>]­thiophene, furan, indole, imidazole, thiazole, oxazole, pyrazole) have been involved into this process, and the target naphthalenes with good yields have been obtained. The opportunity for use in the transformation of diarylethenes with different heterocyclic residues permits synthesis of naphthalenes with desired functional groups. The general character and high efficiency of the reaction promise that the transformation can be an effective synthetic route for the annulation of benzene rings to various aromatic systems, including heterocycles
    corecore