9 research outputs found

    Endothelial cells derived from embryonic stem cells respond to cues from topographical surface patterns

    Get PDF
    Abstract The generation of micro- and nano-topography similar to those found in the extra cellular matrix of three-dimensional tissues is one technique used to recapitulate the cell-tissue physiology found in the native tissues. Despite the fact that ample studies have been conducted on the physiological significance of endothelial cells alignment parallel to shear stress, as this is the normal physiologic arrangement for healthy arterial EC, very few studies have examined the use of topographical signals to initiate endothelial cell alignment. Here, we have examined the ability for our mouse embryonic stem cell-derived endothelial cells (ESC-EC) to align on various microchip topographical systems. Briefly, we generated metal molds with ‘wrinkled’ topography using 1) 15 nm and 2) 30 nm of gold coating on the pre-strained polystryene (PS) sheets. After thermal-induced shrinkage of the PS sheets, polydimethylsiloxane (PDMS) microchips were then generated from the wrinkled molds. Using similar Shrink™-based technology, 3) larger selectively crazed acetone-etched lines in the PS sheets, and 4) fully crazed acetone-treated PS sheets of stochastic topographical morphology were also generated. The 15 nm and 30 nm gold coating generated ‘wrinkles’ of uniaxial anisotropic channels at nano-scaled widths while the crazing generated micron-sized channels. The ESC-EC were able to respond and align on the 320 nm, 510 nm, and the acetone-etched 10.5 μm channels, but not on the fully ‘crazed’ topographies. Moreover, the ESC-EC aligned most robustly on the wrinkles, and preferentially to ridge edges on the 10.5 μm-sized channels. The ability to robustly align EC on topographical surfaces enables a variety of controlled physiological studies of EC-EC and EC-ECM contact guidance, as well as having potential applications for the rapid endothelialization of stents and vascular grafts

    The bismuth oxyhalide family: thin film synthesis and periodic properties

    No full text
    Bismuth oxyhalides (BiOX, where X = F, Cl, Br, I) are interesting materials due to their layered structure, which can be useful for different applications. In this work, we present the synthesis of the complete BiOX family in the thin film form. The tetragonal phase Bi2O3 film deposited onto a glass substrate was transformed into BiOF, BiOCl or BiOBr by a simple immersion at ambient temperature in a halide (X = F, Cl, Br) containing solution. For these films, a residual phase from the oxide was present and for BiOF another phase (tentatively identified as Bi7O5F11) was present too. For the BiOI film synthesis, an iodine and bismuth containing solution was sprayed onto the glass substrate heated at 275 °C and a pure phase was obtained. Microstructural and morphological characterization was performed by X-ray diffraction and scanning electron microscopy, while the chemical environment was studied by X-ray photoelectron spectroscopy. Optical and photocatalytic properties were also obtained. The physical and chemical characteristics of the BiOX films follow a correlation with the atomic radius of the halogen atom incorporated into the corresponding lattice. All the BiOX films showed a photocatalytic response for the photodiscoloration of indigo carmine dye under simulated sunlight irradiation in an alkaline medium. The photocatalytic reactions occurred via 2 proton-electron transfer from the oxide or oxyhalide to the adsorbed IC dye, favoring its reduction to the corresponding leuco IC form.Fil: Gómez Velázquez, Laura Sthefania. Universidad Nacional Autónoma de México; México. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Hernández Gordillo, Agileo. Universidad Nacional Autónoma de México; MéxicoFil: Robinson, Matthew J.. University of California; Estados UnidosFil: Leppert, Valerie J.. University of California; Estados UnidosFil: Rodil, Sandra E.. Universidad Nacional Autónoma de México; MéxicoFil: Bizarro, Monserrat. Universidad Nacional Autónoma de México; Méxic

    Colloidal structure and proton conductivity of the gel within the electrosensory organs of cartilaginous fishes.

    No full text
    Cartilaginous fishes possess gel-filled tubular sensory organs called Ampullae of Lorenzini (AoL) that are used to detect electric fields. Although recent studies have identified various components of AoL gel, it has remained unclear how the molecules are structurally arranged and how their structure influences the function of the organs. Here we describe the structure of AoL gel by microscopy and small-angle X-ray scattering and infer that the material is colloidal in nature. To assess the relative function of the gel's protein constituents, we compared the microscopic structure, X-ray scattering, and proton conductivity properties of the gel before and after enzymatic digestion with a protease. We discovered that while proteins were largely responsible for conferring the viscous nature of the gel, their removal did not diminish proton conductivity. The findings lay the groundwork for more detailed studies into the specific interactions of molecules inside AoL gel at the nanoscale

    Ofatumumab versus Teriflunomide in Multiple Sclerosis

    Get PDF
    BACKGROUND: Ofatumumab, a subcutaneous anti-CD20 monoclonal antibody, selectively depletes B cells. Teriflunomide, an oral inhibitor of pyrimidine synthesis, reduces T-cell and B-cell activation. The relative effects of these two drugs in patients with multiple sclerosis are not known. METHODS: In two double-blind, double-dummy, phase 3 trials, we randomly assigned patients with relapsing multiple sclerosis to receive subcutaneous ofatumumab (20 mg every 4 weeks after 20-mg loading doses at days 1, 7, and 14) or oral teriflunomide (14 mg daily) for up to 30 months. The primary end point was the annualized relapse rate. Secondary end points included disability worsening confirmed at 3 months or 6 months, disability improvement confirmed at 6 months, the number of gadolinium-enhancing lesions per T1-weighted magnetic resonance imaging (MRI) scan, the annualized rate of new or enlarging lesions on T2-weighted MRI, serum neurofilament light chain levels at month 3, and change in brain volume. RESULTS: Overall, 946 patients were assigned to receive ofatumumab and 936 to receive teriflunomide; the median follow-up was 1.6 years. The annualized relapse rates in the ofatumumab and teriflunomide groups were 0.11 and 0.22, respectively, in trial 1 (difference, -0.11; 95% confidence interval [CI], -0.16 to -0.06; P<0.001) and 0.10 and 0.25 in trial 2 (difference, -0.15; 95% CI, -0.20 to -0.09; P<0.001). In the pooled trials, the percentage of patients with disability worsening confirmed at 3 months was 10.9% with ofatumumab and 15.0% with teriflunomide (hazard ratio, 0.66; P = 0.002); the percentage with disability worsening confirmed at 6 months was 8.1% and 12.0%, respectively (hazard ratio, 0.68; P = 0.01); and the percentage with disability improvement confirmed at 6 months was 11.0% and 8.1% (hazard ratio, 1.35; P = 0.09). The number of gadolinium-enhancing lesions per T1-weighted MRI scan, the annualized rate of lesions on T2-weighted MRI, and serum neurofilament light chain levels, but not the change in brain volume, were in the same direction as the primary end point. Injection-related reactions occurred in 20.2% in the ofatumumab group and in 15.0% in the teriflunomide group (placebo injections). Serious infections occurred in 2.5% and 1.8% of the patients in the respective groups. CONCLUSIONS: Among patients with multiple sclerosis, ofatumumab was associated with lower annualized relapse rates than teriflunomide. (Funded by Novartis; ASCLEPIOS I and II ClinicalTrials.gov numbers, NCT02792218 and NCT02792231.)
    corecore