20 research outputs found

    Ongoing diphtheria outbreak in Yemen: a cross-sectional and genomic epidemiology study.

    Get PDF
    BACKGROUND: An outbreak of diphtheria, declared in Yemen in October, 2017, is ongoing. We did a cross-sectional study to investigate the epidemiological, clinical, and microbiological features of the outbreak. METHODS: Probable cases of diphtheria that were defined clinically and recorded through a weekly electronic diseases early warning system (from 2017, week 22, to 2020, week 17) were used to identify trends of the outbreak (we divided the epidemic into three time periods: May 29, 2017, to June 10, 2018; June 11, 2018, to June 3, 2019; and June 4, 2019, to April 26, 2020). We used the line list of diphtheria reports for governorate-level descriptions. Vaccination coverage was estimated using the 2017 and 2018 annual reports by the national Expanded Programme on Immunization. To confirm cases biologically, Corynebacterium diphtheriae was isolated and identified from throat swabs using standard microbiological culture and identification procedures. We assessed differences in the temporal and geographical distributions of cases, including between different age groups. For in-depth microbiological analysis, tox gene and species-specific rpoB real-time PCR, Illumina genomic sequencing, antimicrobial susceptibility analysis (disk diffusion, E-test), and the Elek diphtheria toxin production test were done on confirmed cases. We used genomic data for phylogenetic analyses and to estimate the nucleotide substitution rate. FINDINGS: The Yemen diphtheria outbreak affected almost all governorates (provinces), with 5701 probable cases and 330 deaths recorded up to April 26, 2020. We collected clinical data for 888 probable cases with throat swab samples referred for biological confirmation, and genomic data for 42 positive cases, corresponding to 43 isolates (two isolates from one culture were included due to distinct colony morphologies). The median age of patients was 12 years (range 0·2-80). The proportion of cases in children aged 0-4 years was reduced during the second time period, after a vaccination campaign, compared with the first period (19% [95% CI 18-21] in the first period vs 14% [12-15] in the second period, p<0·0001). Among 43 tested isolates, 39 (91%) produced the diphtheria toxin and two had low level (0·25 mg/L) antimicrobial resistance to penicillin. We identified six C diphtheriae phylogenetic sublineages, four of which are genetically related to isolates from Saudi Arabia, Eritrea, and Somalia. Inter-sublineage genomic variations in genes associated with antimicrobial resistance, iron acquisition, and adhesion were observed. The predominant sublineage (30 [70%] of 43 isolates) was resistant to trimethoprim and was associated with unique genomic features, more frequent neck swelling (p=0·0029) and a younger age of patients (p=0·060) compared with the other sublineages. Its evolutionary rate was estimated at 1·67 × 10-6 substitutions per site per year, placing its most recent common ancestor in 2015, and indicating silent circulation of C diphtheriae in Yemen before the outbreak was declared. INTERPRETATION: In the Yemen outbreak, C diphtheriae shows high phylogenetic, genomic, and phenotypic variation. Laboratory capacity and real-time microbiological monitoring of diphtheria outbreaks need to be scaled up to inform case management and transmission control of diphtheria. Catch-up vaccination might have provided some protection to the targeted population (children aged 0-4 years). FUNDING: National Centre of the Public Health Laboratories (Yemen), Institut Pasteur, and the French Government Investissement d'Avenir Programme. TRANSLATION: For the Arabic translation of the abstract see Supplementary Materials section

    Assessment of cerebral autoregulation patterns with near-infrared spectroscopy during pharmacological-induced pressure changes

    No full text
    Background: Previous work has demonstrated paradoxical increases in cerebral oxygen saturation (ScO2) as blood pressure decreases and paradoxical decreases in ScO2 as blood pressure increases. It has been suggested that these paradoxical responses indicate a functional cerebral autoregulation mechanism. Accordingly, the authors hypothesized that if this suggestion is correct, paradoxical responses will occur exclusively in patients with intact cerebral autoregulation. Methods: Thirty-four patients undergoing elective cardiac surgery were included. Cerebral autoregulation was assessed with the near-infrared spectroscopy-derived cerebral oximetry index (COx), computed by calculating the Spearman correlation coefficient between mean arterial pressure and ScO2. COx less than 0.30 was previously defined as functional autoregulation. During cardiopulmonary bypass, 20% change in blood pressure was accomplished with the use of nitroprusside for decreasing pressure and phenylephrine for increasing pressure. Effects on COx were assessed. Data were analyzed using two-way ANOVA, Kruskal-Wallis test, and Wilcoxon and Mann-Whitney U test. Results: Sixty-five percent of patients had a baseline COx less than 0.30, indicating functional baseline autoregulation. In 50% of these patients (n = 10), COx became highly negative after vasoactive drug administration (from -0.04 [-0.25 to 0.16] to -0.63 [-0.83 to -0.26] after administration of phenylephrine, and from -0.05 [-0.19 to 0.17] to -0.55 [-0.94 to -0.35] after administration of nitroprusside). A negative COx implies a decrease in ScO2 with increase in pressure and, conversely, an increase in ScO2 with decrease in pressure. Conclusions: In this study, paradoxical changes in ScO2 after pharmacological-induced pressure changes occurred exclusively in patients with intact cerebral autoregulation, corroborating the hypothesis that these paradoxical responses might be attributable to a functional cerebral autoregulation

    Characterization of Post-Translational Modifications and Cytotoxic Properties of the Adenylate-Cyclase Hemolysin Produced by Various Bordetella pertussis and Bordetella parapertussis Isolates

    No full text
    International audienceBordetella pertussis and Bordetella parapertussis are the causal agents of whooping cough in humans. They produce diverse virulence factors, including adenylate cyclase-hemolysin (AC-Hly), a secreted toxin of the repeat in toxins (RTX) family with cyclase, pore-forming, and hemolytic activities. Post-translational modifications (PTMs) are essential for the biological activities of the toxin produced by B. pertussis. In this study, we compared AC-Hly toxins from various clinical isolates of B. pertussis and B. parapertussis, focusing on (i) the genomic sequences of cyaA genes, (ii) the PTMs of partially purified AC-Hly, and (iii) the cytotoxic activity of the various AC-Hly toxins. The genes encoding the AC-Hly toxins of B. pertussis and B. parapertussis displayed very limited polymorphism in each species. Most of the sequence differences between the two species were found in the C-terminal part of the protein. Both toxins harbored PTMs, mostly corresponding to palmitoylations of the lysine 860 residue and palmoylations and myristoylations of lysine 983 for B. pertussis and AC-Hly and palmitoylations of lysine 894 and myristoylations of lysine 1017 for B. parapertussis AC-Hly. Purified AC-Hly from B. pertussis was cytotoxic to macrophages, whereas that from B. parapertussis was not

    Corynebacterium rouxii sp. nov., a novel member of the diphtheriae species complex

    No full text
    International audienceA group of six clinical isolates previously identified as Corynebacterium diphtheriae biovar Belfanti, isolated from human cutaneous or peritoneum infections and from one dog, were characterized by genomic sequencing, biochemical analysis and MALDI-TOF mass spectrometry. The six isolates were negative for the diphtheria toxin gene. Phylogenetic analyses showed that the six isolates (including FRC0190T) are clearly demarcated from C. diphtheriae, Corynebacterium belfantii, Corynebacterium ulcerans and Corynebacterium pseudotuberculosis. The average nucleotide identity of FRC0190T with C. diphtheriae NCTC11397T was 92.6%, and was 91.8% with C. belfantii FRC0043T. C. diphtheriae subsp. lausannense strain CHUV2995T appeared to be a later heterotypic synonym of C. belfantii (ANI, 99.3%). Phenotyping data revealed an atypical negative or heterogeneous intermediate maltose fermentation reaction for the six isolates. MALDI-TOF mass spectrometry differentiated the new group from the other Corynebacterium taxa by the presence of specific spectral peaks. rpoB sequences showed identity to atypical, maltose-negative C. diphtheriae biovar Belfanti isolates previously described from two cats in the USA. We propose the name Corynebacterium rouxii sp. nov. for the novel group, with FRC0190T (= CIP 111752T = DSM 110354T) as type strain

    4,4-Dimethyl-1,2,3,4-tetrahydroquinoline-based PPAR alpha/gamma agonists. Part. II: Synthesis and pharmacological evaluation of oxime and acidic head group structural variations

    No full text
    International audienceType-2 diabetes (T2D) is a complex metabolic disease characterized by insulin resistance in the liver and peripheral tissues accompanied by a deficiency in pancreatic beta-cells. Since their discovery, three subtypes of peroxisome proliferator activated receptors have been identified, namely PPAR alpha, PPAR gamma and PPAR beta/(delta). In this study, we were interested in designing novel PPAR gamma selective agonists and/or dual PPAR alpha/gamma agonists. Based on the typical topology of synthetic PPAR agonists, we focused our design approach on using 4,4-dimethyl-1,2,3,4-tetrahydroquinoline as a novel cyclic scaffold with oxime and acidic head group structural variations. (C) 2009 Elsevier Ltd. All rights reserved
    corecore