4 research outputs found

    The Longest Amyloid‑β Precursor Protein Intracellular Domain Produced with Aβ42 Forms β‑Sheet-Containing Monomers That Self-Assemble and Are Proteolyzed by Insulin-Degrading Enzyme

    No full text
    Alzheimer’s disease (AD) is the most common neurodegenerative disease resulting in dementia. It is characterized pathologically by extracellular amyloid plaques composed mainly of deposited Aβ42 and intracellular neurofibrillary tangles formed by hyperphosphorylated tau protein. Recent clinical trials targeting Aβ have failed, suggesting that other polypeptides produced from the amyloid-β precursor protein (APP) may be involved in AD. An attractive polypeptide is AICD57, the longest APP intracellular domain (AICD) coproduced with Aβ42. Here, we show that AICD57 forms micelle-like assemblies that are proteolyzed by insulin-degrading enzyme (IDE), indicating that AICD57 monomers are in dynamic equilibrium with AICD57 assemblies. The N-terminal part of AICD57 monomer is not degraded, but its C-terminal part is hydrolyzed, particularly in the YENPTY motif that has been associated with the hyperphosphorylation of tau. Therefore, sustaining IDE activity well into old age holds promise for regulating levels of not only Aβ but also AICD in the aging brain

    Differential Effects of Polyphenols on Insulin Proteolysis by the Insulin-Degrading Enzyme

    No full text
    The insulin-degrading enzyme (IDE) possesses a strong ability to degrade insulin and Aβ42 that has been linked to the neurodegeneration in Alzheimer’s disease (AD). Given this, an attractive IDE-centric strategy for the development of therapeutics for AD is to boost IDE’s activity for the clearance of Aβ42 without offsetting insulin proteostasis. Recently, we showed that resveratrol enhances IDE’s activity toward Aβ42. In this work, we used a combination of chromatographic and spectroscopic techniques to investigate the effects of resveratrol on IDE’s activity toward insulin. For comparison, we also studied epigallocatechin-3-gallate (EGCG). Our results show that the two polyphenols affect the IDE-dependent degradation of insulin in different ways: EGCG inhibits IDE while resveratrol has no effect. These findings suggest that polyphenols provide a path for developing therapeutic strategies that can selectively target IDE substrate specificity
    corecore