13 research outputs found

    Association of lameness with milk yield and lactation curves in Chios dairy ewes

    Get PDF
    The objective of the study was twofold: (i) to quantify the differences in daily milk yield (DMY) and total milk yield (TMY) between lame and non-lame dairy ewes and (ii) to determine the shape of lactation curves around the lameness incident. The overall study was a prospective study of lameness for the surveyed sheep population, with a nested study including the selection of matching controls for each lame ewe separately. Two intensively reared flocks of purebred Chios ewes and a total of 283 ewes were used. Data, including gait assessment and DMY records, were collected on a weekly basis during on-farm visits across the milking period. A general linear model was developed for the calculation of lactation curves of lame and non-lame ewes, whereas one-way ANOVA was used for the comparisons between lame ewes and their controls. Lameness incidence was 12·4 and 16·8% on Farms A and B, respectively. Average DMY in lame ewes was significantly lower (213·8 g, P < 0·001) compared with the rest of the flock, where DMY averaged 1·340 g. The highest DMY reduction in lame ewes was observed during the week 16 of the milking period (P < 0·001), whereas the reduction of DMY, for lame ewes, remained significant at P < 0·001 level from week 8 to week 28 of milking. Comparisons between lame and controls revealed that at the week of lameness diagnosis a significant DMY reduction (P ≤ 0·001) was observed in lame ewes (about 32·5%), which was maximised 1 week later (35·8%, P ≤ 0·001) and continued for several weeks after recovery, resulting in 19·3% lower TMY for lame ewes for the first 210 d of the milking period (P < 0·01). Moreover, at flock level, TMY for non-lame and lame ewes, as calculated by the general linear model, was 318·9 and 268·0 kg, respectively. The results of this study demonstrate evidence of significant financial losses in dairy sheep due to lameness which, however, need to be accurately estimated in further, more detailed, analyses

    Genetic parameters of calcium, phosphorus, magnesium and potassium serum concentrations during the first eight days after calving in Holstein cows

    Get PDF
    Calcium, Mg, P, and K are of great importance for the health and productivity of dairy cows after calving. So far genetic studies have focused on clinical hypocalcemia, leaving the genetic parameters of these macroelements unstudied. Our objective was to estimate the genetic parameters of Ca, Mg, P, and K serum concentrations and their changes during the first 8d after calving. The study was conducted in 9 herds located in northern Greece, with 1,021 Holstein cows enrolled from November 2010 until November 2012. No herd used any kind of preventive measures for hypocalcemia. Pedigree information for all cows was available. A total of 35 cows were diagnosed and treated for periparturient paresis and, therefore, excluded from the study. The remaining 986 cows were included in genetic analysis. The distribution of cows across parities was 459 (parity 1), 234 (parity 2), 158 (parity 3), and 135 (parity ≥4). A sample of blood was taken from each cow on d1, 2, 4, and 8 after calving and serum concentrations of Ca, P, Mg, and K were measured in each sample. A final data set of 15,390 biochemical records was created consisting of 3,903 Ca, 3,902 P, 3,903Mg, and 3,682K measurements. Moreover, changes of these concentrations between d1 and 4 as well as 1 and 8 after calving were calculated and treated as different traits. Random regression models were used to analyze the data. Results showed that daily heritabilities of Ca, P, and Mg concentrations traits were moderate to high (0.20-0.43), whereas those of K were low to moderate (0.12-0.23). Regarding concentration changes, only Mg change between d1 and 8 after calving had a significant heritability of 0.18. Genetic correlations between Ca, P, Mg, and K concentrations and their concentration changes from d1 to 4 and 1 to 8 after calving were not significantly different from zero. Most phenotypic correlations among Ca, P, Mg, and K concentrations were positive and low (0.09-0.16), whereas the correlation between P and Mg was negative and low (-0.16). Phenotypic correlations among macromineral concentrations on d1 and their changes from d1 to 4 and 1 to 8 after calving varied for each macromineral. This study revealed that genetic selection for normal Ca, P, Mg, and K concentrations in the first week of lactation is possible and could facilitate the management of their deficiencies during the early stages of lactation. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved

    Skeletal muscle and adipose tissue reserves and mobilisation in transition Holstein cows: Part 1 Biological variation and affecting factors.

    Get PDF
    Nutrient deficit during the periparturient period leads to mobilisation of body energy and protein reserves. Research regarding fat reserves and mobilisation is extensive, while, on the contrary, investigation of muscle mobilisation during the periparturient period is limited. The aim of this cohort study was to simultaneously investigate the biological variation of skeletal muscle and subcutaneous fat reserves together with their mobilisation in transition Holstein cows of different herds, using ultrasonography, and to assess potential affecting factors. For this purpose, ultrasound measurements of longissimus dorsi muscle thickness (LDT) and backfat thickness (BFT) from 238 multiparous cows of six dairy farms were obtained at six time points across the transition period (from 21 days pre- to 28 days postpartum). Concentrations of serum creatinine and non-esterified fatty acids were determined in order to confirm the loss of muscle mass and adipose tissue, respectively. Cases of clinical postparturient diseases and subclinical ketosis (scKET) during the first 28 days postcalving were recorded. Cows mobilised on average 32.8% and 37.3% of LDT and BFT reserves, respectively. Large between-cow variation was observed for both the onset and the degree of mobilisation. Time point, initial body condition score and parity were the most important predictors of LDT variation. Cows diagnosed with metritis (MET) had lower LDT postpartum and mobilised more muscle depth compared to cows not diagnosed with MET. Initial BCS, time point, initial BW (estimated by heart girth measurement) and parity were the most important predictors of BFT variation. Cows diagnosed with MET mobilised more backfat between -7d and 7d compared to cows not diagnosed with MET. Cows with scKET mobilised more backfat between 7- and 21 days postpartum compared to healthy ones. Variation of subcutaneous fat and skeletal muscle reserves during the transition period was large and affected by herd and several cow-level factors

    Skeletal muscle and adipose tissue reserves and mobilisation in transition Holstein cows: Part 2 association with postpartum health, reproductive performance and milk production.

    Get PDF
    The aim of this study was, for the first time, to simultaneously assess the association of skeletal muscle and subcutaneous fat reserves and their mobilisation, measured by ultrasonography, with the incidence of specific postparturient health, reproduction, and milk production traits. For this purpose, ultrasound measurements of longissimus dorsi thickness (LDT) and backfat thickness (BFT) from 238 multiparous cows from 6 dairy farms were obtained at 6 time points during the transition period (from 21 days pre- to 28 days postpartum). In each case, LDT and BFT measurements at each time point and LDT and BFT mobilisation variables at each study period were assessed simultaneously. Cases of specific clinical postparturient diseases and subclinical ketosis were recorded. An additional disease trait was used, defined as the presence or absence of at least one clinical condition after calving (CD_1-28). The associated disease odds with LDT/BFT variables were assessed with binary logistic regression models. The associated hazard for 1st artificial insemination (AI) and for pregnancy by 150 days-in-milk (PREG_150DIM) was assessed with Cox proportional hazard models. Moreover, binary logistic models were used to assess the associated odds for pregnancy to 1stAI (PREG_1stAI). Finally, association with 30d, 100d and 305d milk yield was assessed with linear regression models. Increased muscle depth during transition was negatively associated with odds for metritis and CD_1-28, while associations with odds for subclinical ketosis were inconclusive. Moreover, increased LDT reserves were associated with greater hazard for 1st AI by 150 days-in-milk, but results were inconclusive regarding odds for PREG_1stAI. Increased LDT mobilisation was associated with increased odds for metritis. Increased BFT reserves were positively associated with odds for metritis, CD_1-28 and subclinical ketosis and with decreased hazard for PREG_150DIM. Increased BFT mobilisation was associated with increased odds for subclinical ketosis and with decreased odds for PREG_1stAI and decreased hazard for PREG_150DIM. Cows with moderate BFT reserves performed better. Finally, increased BFT mobilisation during -21d to -7d from parturition was associated with less milk by 30d and 100d. On the contrary, increased BFT mobilisation during -7d to 7d was associated with more milk by 305d. Metabolism of muscle and fat tissue during transition period was differently associated with different postparturient health, reproduction and milk production traits. In general, greater muscle mass and moderate fat reserves with limited muscle and fat mobilisation were associated with better performance

    Permissiveness of bovine epithelial cells from lung, intestine, placenta and udder for infection with Coxiella burnetii

    No full text
    International audienceRuminants are the main source of human infections with the obligate intracellular bacterium Coxiella (C.) burnetii. Infected animals shed high numbers of C. burnetii by milk, feces, and birth products. In goats, shedding by the latter route coincides with C. burnetii replication in epithelial (trophoblast) cells of the placenta, which led us to hypothesize that epithelial cells are generally implicated in replication and shedding of C. burnetii. We therefore aimed at analyzing the interactions of C. burnetii with epithelial cells of the bovine host (1) at the entry site (lung epithelium) which govern host immune responses and (2) in epithelial cells of gut, udder and placenta decisive for the quantity of pathogen excretion. Epithelial cell lines [PS (udder), FKD-R 971 (small intestine), BCEC (maternal placenta), F3 (fetal placenta), BEL-26 (lung)] were inoculated with C. burnetii strains Nine Mile I (NMI) and NMII at different cultivation conditions. The cell lines exhibited different permissiveness for C. burnetii. While maintaining cell viability, udder cells allowed the highest replication rates with formation of large cell-filling Coxiella containing vacuoles. Intestinal cells showed an enhanced susceptibility to invasion but supported C. burnetii replication only at intermediate levels. Lung and placental cells also internalized the bacteria but in strikingly smaller numbers. In any of the epithelial cells, both Coxiella strains failed to trigger a substantial IL-1β, IL-6 and TNF-α response. Epithelial cells, with mammary epithelial cells in particular, may therefore serve as a niche for C. burnetii replication in vivo without alerting the host’s immune response
    corecore