42 research outputs found
On the efficacy of anthracene isomers for triplet transmission from CdSe nanocrystals
The effect of isomeric substitutions on the transmitter for triplet energy transfer (TET) between nanocrystal (NC) donor and molecular acceptor is investigated. Each isomeric acceptor is expected to bind in a unique orientation with respect to the NC donor. We see that this orbital overlap drastically affects the transmission of triplets. Here, two functional groups, the carboxylic acid and dithiocarbamate, were varied between the 1-, 2- and 9-positions of the anthracene ring to give three ACA and three ADTC isomers. These six anthracene isomers served as transmitters for triplets between CdSe NC sensitizers and 9,10-diphenylanthracene annihilators for photon upconversion. The photon upconversion quantum yield (QY) is the highest for 9-ACA (12%), lowest for 9-ADTC (0.1%), around 3% for both 1-ACA and 1-ADTC, and about 1% for the 2-isomers. These trends in QYs are reflected in the rates of TET given by ultrafast transient absorption spectroscopy where a maximum of 3.8 × 107 s−1 for 9-ACA was measured. Molecular excited state energy levels were measured both in solution and polymer hosts to correlate structure to TET. This work confirms that anthracene excited states levels are very sensitive to molecular substitution, which in combination with orbital overlap, critically affect Dexter-based TET.Instituto de Investigaciones FisicoquÃmicas Teóricas y Aplicada
Surface-Bound Proteins with Preserved Functionality
Biocompatibility of materials strongly depends on their surface properties. Therefore, surface derivatization in a controllable manner provides means for achieving interfaces essential for a broad range of chemical, biological, and medical applications. Bioactive interfaces, while manifesting the activity for which they are designed, should suppress all nonspecific interaction between the supporting substrates and the surrounding media. This article describes a procedure for chemical derivatization of glass and silicon surfaces with polyethylene glycol (PEG) layers covalently functionalized with proteins. While the proteins introduce the functionality to the surfaces, the PEGs provide resistance against nonspecific interactions. For formation of aldehyde-functionalized surfaces, we coated the substrates with acetals (i.e., protected aldehydes). To avoid deterioration of the surfaces, we did not use strong mineral acids for the deprotection of the aldehydes. Instead, we used a relatively weak Lewis acid for conversion of the acetals into aldehydes. Introduction of α,ω-bifunctional polymers into the PEG layers, bound to the aldehydes, allowed us to covalently attach green fluorescent protein and bovine carbonic anhydrase to the surfaces. Spectroscopic studies indicated that the surface-bound proteins preserve their functionalities. The surface concentrations of the proteins, however, did not manifest linear proportionality to the molar fractions of the bifunctional PEGs used for the coatings. This finding suggests that surface-loading ratios cannot be directly predicted from the compositions of the solutions of competing reagents used for chemical derivatization
Dipole-induced effects on charge transfer and charge transport. Why do molecular electrets matter?
Charge transfer (CT) and charge transport (CTr) are at the core of life-sustaining biological processes, and of processes that govern the performance of electronic and energy-conversion devices. Electric fields are invaluable for guiding charge movement. Therefore, as electrostatic analogues of magnets, electrets have unexplored potential for generating local electric fields for accelerating desired CT processes and suppressing undesired ones. The notion about dipole-generated local fields affecting CT has evolved since the middle of the 20th century. In the 1990s, the first reports demonstrating the dipole effects on the kinetics of long-range electron transfer appeared. Concurrently, the development of molecular-level designs of electric junctions has led the exploration of dipole effects on CTr. Biomimetic molecular electrets, such as polypeptide helices, are often the dipole sources in CT systems. Conversely, surface-charge electrets and self-assembled monolayers of small polar conjugates are the preferred sources for modifying interfacial electric fields for controlling CTr. The multifaceted complexity of such effects on CT and CTr testifies for the challenges and the wealth of this field that still remains largely unexplored. This review outlines the basic concepts about dipole effects on CT and CTr, discusses their evolution, and provides accounts for their future developments and impacts.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
Recommended from our members
Functionalized polymeric nanoparticles loaded with indocyanine green as theranostic materials for targeted molecular near infrared fluorescence imaging and photothermal destruction of ovarian cancer cells.
Background and objectivesOvarian cancer remains the deadliest malignancy of the female reproductive system. The ability to identify and destroy all ovarian tumor nodules may have a termendous impact on preventing tumor recurrence, and patient survival. The objective of this study is to investigate the effectiveness of a nano-structured system for combined near infrared (NIR) fluorescence imaging of human epidermal growth factor receptor-2 (HER2) over-expression, as a biomarker of ovarian cancer cells, and photothermal destruction of these cells in vitro.Materials and methodsThe nano-structured system consists of the near infrared dye, indocyanine green (ICG), encapsulated within poly(allylamine) hydrochloride chains cross-linked ionically with sodium phosphate. The surface of the construct is functionalized by covalently attached polyethylene glycol, and monoclonal antibodies against HER2 using reducitve amination methods. We use dynamic light scattering, and absorption and fluorescence spectroscopy for phyiscal characterization of the constructs. Flow cytometry and fluorescence microscopy are used to investigate molecular targeting and imaging capabilities of the constructs against SKOV3 and OVCAR3 ovarian cancer cell lines, which have relatively high and low expression levels of the HER2 receptor, respectively. Continuous NIR laser irradiation at 808 nm is used to investigating the utility of the constructs in mediating photothermal destruction of SKOV3 cells.ResultsFlow cytometry results indicate that the functionalized nano-constructs are more effective in targeting the HER2 receptor than non-encapsulated ICG and non-functionlaized constructs (P < 0.005). Fluorescence microscopic images show the capaiblity of the functionalized constructs in NIR imaging of HER2 overexpression. The functionalized nano-constructs are also capable of inducing a significantly greater increase in photothermal destruction of SKOV3 cells than free ICG and non-functionalized constructs (P < 0.005).ConclusionWe have demonstrated the efficacy of polymeric nano-structured constructs loaded with ICG, and functionalized with the monoclonal antibodies, as thernaostic materials for targted molecular NIR imaging of the HER2 receptor overexpression on ovarian cancer cells, and photothermal destruction of these cells. These nanoparticles may prove useful towards intraoperative detection, imaging, and phototherapy of small ovarian cancer nodules
Parallel Charge-Transfer Mechanisms Allow for Diversifying the Choices for Photoredox Catalysts
Photochemistry provides access to reactive intermediates that are often inaccessible by any other means. Most organic molecules, however, are colorless ultraviolet absorbers. Therefore, photocatalysts absorbing in the visible spectral region are essential for transferring the required energy and charges to make challenging chemical transformations possible. A selection of a photocatalyst for driving oxidative or reductive reactions is crucial and is commonly based on their electrochemical potentials as well as the potentials of the starting materials. This selection, however, sometimes proves limiting and misleading, especially when the thermodynamic driving forces of the charge-transfer steps are relatively small. Here, we show that porphyrinoids with differences in their electrochemical potentials exceeding 0.5 V can photocatalyze the same model reaction of N-alkyl-2,4,6-triphenylpyridinium salt with alkynyl p-tolylsulfone to form the same alkylated alkynyl product in similar yields. Our studies reveal that switching between parallel reaction pathways makes the attainment of these conversion efficiencies possible. Electron-rich catalysts drive the formation of alkyl radicals principally via a photoinduced electron transfer to the pyridinium ion and a sequential hole transfer recovers their ground states, i.e., PET-HT mechanism. Conversely, a photoinduced hole transfer dominates the initial formation of the reduced forms of electron-deficient porphyrins that then transfer electrons to the pyridinium salt to release the same alkyl radicals, i.e., PHT-ET mechanism. This discovery demonstrates a paradigm where reaction mechanism adjust to the electronic properties of catalysts and opens doors for transformative diversification and broadening of the applicability of photochemical transformations.<br /